দ্বিঘাত ও ত্রিঘাত সমীকরণ সংক্রান্ত
কোন সমীকরণের একটি মূল 2 + i√3?
x2 + 4x – 7 = 0
x2 – 3x + 2 = 0
x2 – 4x + 7 = 0
x2 – 4x – 7 = 0
x=2+3i বা, (x−2)2=(3i)2 বা, x2−4x+4=−3∴x2−4x+7=0 \begin{array}{c}x=2+\sqrt{3} i \\ \text { বা, }(x-2)^{2}=(\sqrt{3} i)^{2} \\ \text { বা, } x^{2}-4 x+4=-3 \\ \therefore x^{2}-4 x+7=0\end{array} x=2+3i বা, (x−2)2=(3i)2 বা, x2−4x+4=−3∴x2−4x+7=0
দৃশ্যকল্প-১ : 3x2−4x+1=03 \mathrm{x}^2-4 \mathrm{x}+1=03x2−4x+1=0 সমীকরণের মূলদ্বয় a\mathrm{a}a ও b\mathrm{b}b.
দৃশ্যকল্প-২ : x2−qx+r=0x^2-q x+r=0x2−qx+r=0 সমীকরণের মূল দুইটি α\alphaα ও β\betaβ.
q(x)=lx2+mx+n,r(x)=nx2+mx+l \mathrm{q}(\mathrm{x})=l \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}, \mathrm{r}(\mathrm{x})=\mathrm{nx}^{2}+\mathrm{mx}+l q(x)=lx2+mx+n,r(x)=nx2+mx+l এবং z=−2−23i z=-2-2 \sqrt{3} i z=−2−23i একটি জটিল রাশি।
F(x)=27x2+6x−(m+2),P(x)=rx2−2nx+4m F(x)=27 x^{2}+6 x-(m+2), P(x)=r x^{2}-2 n x+4 m F(x)=27x2+6x−(m+2),P(x)=rx2−2nx+4m এবং Q(x)=mx2+nx+r Q(x)=m x^{2}+n x+r Q(x)=mx2+nx+r
দৃশ্যকর-১: p(x)=(a+b+c)x2+(b+2c)x+c \mathrm{p}(\mathrm{x})=(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}^{2}+(\mathrm{b}+2 \mathrm{c}) \mathrm{x}+ \mathrm{c} p(x)=(a+b+c)x2+(b+2c)x+c
দৃশ্যকর-২: ω \omega ω এবং ω2 \omega^{2} ω2 এককের দুইটি জটিল ঘনমূল।