ম্যাট্রিক্স এর যোগ, বিয়োগ ও গুণ
দুটি ম্যাট্রিক্স A এবং B দেয়া আছে। AB ও BA এর মধ্যে কোন সম্পর্ক থাকলে তা নির্ণয় কর। B-1 কে x ও A এর মাধ্যমে প্রকাশ কর।
A=[3x−4x2x−2xx0−x−xx] A = \left [ \begin{matrix} 3 x & - 4 x & 2 x \\ - 2 x & x & 0 \\ - x & - x & x \end{matrix} \right ] A=3x−2x−x−4xx−x2x0x
এবং
B=[x2x−2x2x5x−4x3x7x−5x] B = \left [ \begin{matrix} x & 2 x & - 2 x \\ 2 x & 5 x & - 4 x \\ 3 x & 7 x & - 5 x \end{matrix} \right ] B=x2x3x2x5x7x−2x−4x−5x
AB=[3x−4x2x−2xx0−x−xx][x2x−2x2x5x−4x3x7x−5x]=x[3−42−210−1−11]⋅x[12−225−437−5]=x2[100010001]=[x2000x2000x2] অনুরূপভাবে, BA=[x2000x2000x2]∴AB=BA∴BA=x2I⇒1x2 A=B−1I⇒B−1=Ax2=[3x−4x2x−2x1x0−1x−1x1x]∴B−1=Ax2 \begin{array}{l}\text { } \mathrm{AB}=\left[\begin{array}{ccc}3 \mathrm{x} & -4 \mathrm{x} & 2 \mathrm{x} \\ -2 \mathrm{x} & \mathrm{x} & 0 \\ -\mathrm{x} & -\mathrm{x} & \mathrm{x}\end{array}\right]\left[\begin{array}{ccc}\mathrm{x} & 2 \mathrm{x} & -2 \mathrm{x} \\ 2 \mathrm{x} & 5 \mathrm{x} & -4 \mathrm{x} \\ 3 \mathrm{x} & 7 \mathrm{x} & -5 \mathrm{x}\end{array}\right] \\ =\mathrm{x}\left[\begin{array}{ccc}3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1\end{array}\right] \cdot \mathrm{x}\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5\end{array}\right]=\mathrm{x}^{2}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\mathrm{x}^{2} & 0 & 0 \\ 0 & \mathrm{x}^{2} & 0 \\ 0 & 0 & \mathrm{x}^{2}\end{array}\right] \\ \text { অনুরূপভাবে, } \mathrm{BA}=\left[\begin{array}{ccc}\mathrm{x}^{2} & 0 & 0 \\ 0 & \mathrm{x}^{2} & 0 \\ 0 & 0 & \mathrm{x}^{2}\end{array}\right] \therefore \mathrm{AB}=\mathrm{BA} \\ \therefore \mathrm{BA}=\mathrm{x}^{2} \mathrm{I} \Rightarrow \frac{1}{\mathrm{x}^{2}} \mathrm{~A}=\mathrm{B}^{-1} \mathrm{I} \Rightarrow \mathrm{B}^{-1}=\frac{\mathrm{A}}{\mathrm{x}^{2}}=\left[\begin{array}{ccc}\frac{3}{\mathrm{x}} & -\frac{4}{\mathrm{x}} & \frac{2}{\mathrm{x}} \\ -\frac{2}{\mathrm{x}} & \frac{1}{\mathrm{x}} & 0 \\ -\frac{1}{\mathrm{x}} & -\frac{1}{\mathrm{x}} & \frac{1}{\mathrm{x}}\end{array}\right] \\ \therefore \mathrm{B}^{-1}=\frac{\mathrm{A}}{\mathrm{x}^{2}}\end{array} AB=3x−2x−x−4xx−x2x0xx2x3x2x5x7x−2x−4x−5x=x3−2−1−41−1201⋅x123257−2−4−5=x2100010001=x2000x2000x2 অনুরূপভাবে, BA=x2000x2000x2∴AB=BA∴BA=x2I⇒x21 A=B−1I⇒B−1=x2A=x3−x2−x1−x4x1−x1x20x1∴B−1=x2A
A=[21−1] A=\left[\begin{array}{lll}2 & 1 & -1\end{array}\right] A=[21−1] এবং B=[203] B=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right] B=203 হলে, BA= \mathrm{BA}= BA= ?
A=[22−1303232],B=[x1x2x3] \mathrm{A}=\left[\begin{array}{ccc}2 & 2 & -1 \\ 3 & 0 & 3 \\ 2 & 3 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right] A=232203−132,B=x1x2x3 এবং C=[5711] \mathrm{C}=\left[\begin{array}{c}5 \\ 7 \\ 11\end{array}\right] C=5711
A=[1234],B=[1001] A = \left [ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right ] , B = \left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] A=[1324],B=[1001]
AT – BT = কত?
A=[1,2,3],BA=[246369123] \mathbf{A}=[\mathbf{1 , 2 , 3}], B A=\left[\begin{array}{lll}2 & 4 & 6 \\ 3 & 6 & 9 \\ 1 & 2 & 3\end{array}\right] A=[1,2,3],BA=231462693 হলে B ম্যাট্রিক্সটি নির্ণয় করো।