লিমিট
নিচের সীমার মান কোনটি? limx→0ex2−cosxx2 \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x^{2}}-\cos x}{\mathrm{x}^{2}} limx→0x2ex2−cosx
3/2
116 \frac{{1}}{16}161
232 \frac{\sqrt{2}}{32}322
2\sqrt{2}2
=limx→01x2{(1+x21!+(x2)22!+⋯∞)−(1−x22!+x44!−⋯∞)}=limx→01x2{(11!+12!)x2+(12!−14!)x4+⋯∞)}=limx→0{32+(12!−14!)x2+x এর উচ্চঘাত সম্বলিত \begin{array}{l} =\lim _{x \rightarrow 0} \frac{1}{x^{2}}\left\{\left(1+\frac{x^{2}}{1 !}+\frac{\left(x^{2}\right)^{2}}{2 !}+\cdots \infty\right)-\right. \\ \left.\left(1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\cdots \infty\right)\right\} \\ \left.=\lim _{x \rightarrow 0} \frac{1}{x^{2}}\left\{\left(\frac{1}{1 !}+\frac{1}{2 !}\right) x^{2}+\left(\frac{1}{2 !}-\frac{1}{4 !}\right) x^{4}+\cdots \infty\right)\right\} \\ =\lim _{x \rightarrow 0}\left\{\frac{3}{2}+\left(\frac{1}{2 !}-\frac{1}{4 !}\right) x^{2}+x\right. \text { এর উচ্চঘাত সম্বলিত } \end{array} =limx→0x21{(1+1!x2+2!(x2)2+⋯∞)−(1−2!x2+4!x4−⋯∞)}=limx→0x21{(1!1+2!1)x2+(2!1−4!1)x4+⋯∞)}=limx→0{23+(2!1−4!1)x2+x এর উচ্চঘাত সম্বলিত
=32+0=32(Ans) =\frac{3}{2}+0=\frac{3}{2}(\mathrm{Ans}) =23+0=23(Ans)
Alternate: limx→0ex2−cosxx2 \lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}} limx→0x2ex2−cosx
=limx→0ex2−1+1−cosxx2=limx→0ex2−1x2++x→01−cosxx2=1+limx→02sinf2(x/2)x2=1+2×limx→0sin2(x/2)(x/2)2×14=1+1×12=32 \begin{array}{l} =\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1+1-\cos x}{x^{2}} \\ =\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{x^{2}}++_{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \\ =1+\lim _{x \rightarrow 0} \frac{2 \sin _{f}^{2}(x / 2)}{x^{2}} \\ =1+2 \times \lim _{x \rightarrow 0} \frac{\sin ^{2}(x / 2)}{(x / 2)^{2}} \times \frac{1}{4} \\ =1+1 \times \frac{1}{2}=\frac{3}{2} \end{array} =limx→0x2ex2−1+1−cosx=limx→0x2ex2−1++x→0x21−cosx=1+limx→0x22sinf2(x/2)=1+2×limx→0(x/2)2sin2(x/2)×41=1+1×21=23
If the function f(x)=(1−x)tanπx2f(x) = (1 - x)\tan \dfrac{{\pi x}}{2}f(x)=(1−x)tan2πx is continuous at x=1x = 1x=1 ,then f(1)=f(1)=f(1)=
limx→0xtan2x−2xtanx(1−cos2x)2 \displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}} x→0lim(1−cos2x)2xtan2x−2xtanx is equal to
এর সঠিক মান কোনটি?
নিচের সীমার মান কোনটি? limx→ysinx−sinyx−y\lim _{x \rightarrow y} \frac{\sin x-\sin y}{x-y}limx→yx−ysinx−siny