ধারা

প্রমাণ কর যে , 11.2+12.3+13.4..=nn+1 \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4} \ldots \ldots \ldots \ldots . .=\frac{n}{n+1}

RUET 06-07

11.2+12.3+13.4...=nn+1;Un=1n(n+1)Sn=C1(n+1) \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4} \ldots \ldots \ldots \ldots . . .=\frac{n}{n+1} ; U_{n}=\frac{1}{n(n+1)} \quad \therefore S_{n}=C-\frac{1}{(n+1)}

When, n=0;Sn=00=C11C=1Sn=11n+1=n+11n+1=nn+1 \mathrm{n}=0 ; \mathrm{S}_{\mathrm{n}}=0 \quad \therefore 0=\mathrm{C}-\frac{1}{1} \quad \therefore \mathrm{C}=1 \quad \therefore \mathrm{S}_{\mathrm{n}}=1-\frac{1}{\mathrm{n}+1}=\frac{\mathrm{n}+1-1}{\mathrm{n}+1}=\frac{\mathrm{n}}{\mathrm{n}+1}

ধারা টপিকের ওপরে পরীক্ষা দাও