নতি (Argument)

যদি z1=1i,z2=3+i z_{1} = 1 - i , z_{2} = \sqrt{3} + i হয় তবে   z2z1 \frac{z_{2}}{z_{1}}   এর নতি --

অসীম স্যার


θ1=tan111=tan1{tan(π4)}=π4 \begin{array}{l} \theta_{1}=\tan ^{-1} \frac{-1}{1} \\ =\tan ^{-1}\left\{\tan \left(-\frac{\pi}{4}\right)\right\}=-\frac{\pi}{4} \end{array}

θ2=tan113=tan1(tanπ6)=π6z2z1 এর নতি =θ2θ1=π6(π4)=2π+3π12=5π12 \begin{array}{l}\theta_{2}=\tan ^{-1} \frac{1}{\sqrt{3}}=\tan ^{-1}\left(\tan \frac{\pi}{6}\right)=\frac{\pi}{6} \\ \therefore \frac{z_{2}}{z_{1}} \text { এর নতি } \\ =\theta_{2}-\theta_{1}=\frac{\pi}{6}-\left(\frac{-\pi}{4}\right)=\frac{2 \pi+3 \pi}{12}=\frac{5 \pi}{12}\end{array}

নতি (Argument) টপিকের ওপরে পরীক্ষা দাও