নতি (Argument)
যদি reiθ=3+2i2+3i+1+5i1−2i r e^{i \theta} = \frac{3 + 2 i}{2 + 3 i} + \frac{1 + 5 i}{1 - 2 i} reiθ=2+3i3+2i+1−2i1+5i হয়, তবে r ও θ এর মান নির্ণয় কর।
দেয়া আছে, r⋅eiθ=3+2i2+3i+1+5i1−2i r \cdot \mathrm{e}^{\mathrm{i} \theta}=\frac{3+2 \mathrm{i}}{2+3 \mathrm{i}}+\frac{1+5 \mathrm{i}}{1-2 \mathrm{i}} r⋅eiθ=2+3i3+2i+1−2i1+5i
⇒r⋅eiθ=(3+2i)(2−3i)(2+3i)(2−3i)+(1+5i)(1+2i)(1−2i)(1+2i)⇒r⋅eiθ=6−9i+4i−6i24−9i2+1+2i+5i+10i21−4i2⇒r⋅eiθ=(6+6)+i(4−9)4+9+(1−10)+i(2+5)1+4[∵i2=−1]⇒r⋅eiθ=12−5i13+−9+7i5⇒r⋅eiθ=1213−513i−95+75i⇒r⋅eiθ=−5765+6665i∴r=(−5765)2+(6665)2=32+19+435665=760565=39565=35 (Ans.) θ=π−tan−1(66655765)=π−tan−1(6657) (Ans.) \begin{array}{l} \Rightarrow \mathrm{r} \cdot \mathrm{e}^{\mathrm{i} \theta}=\frac{(3+2 \mathrm{i})(2-3 \mathrm{i})}{(2+3 \mathrm{i})(2-3 \mathrm{i})}+\frac{(1+5 \mathrm{i})(1+2 \mathrm{i})}{(1-2 \mathrm{i})(1+2 \mathrm{i})} \\ \Rightarrow \mathrm{r} \cdot \mathrm{e}^{\mathrm{i} \theta}=\frac{6-9 \mathrm{i}+4 \mathrm{i}-6 \mathrm{i}^{2}}{4-9 \mathrm{i}^{2}}+\frac{1+2 \mathrm{i}+5 \mathrm{i}+10 \mathrm{i}^{2}}{1-4 \mathrm{i}^{2}} \\ \Rightarrow \mathrm{r} \cdot \mathrm{e}^{\mathrm{i} \theta}=\frac{(6+6)+\mathrm{i}(4-9)}{4+9}+\frac{(1-10)+\mathrm{i}(2+5)}{1+4}\left[\because \mathrm{i}^{2}=-1\right] \\ \Rightarrow \mathrm{r} \cdot \mathrm{e}^{\mathrm{i} \theta}=\frac{12-5 \mathrm{i}}{13}+\frac{-9+7 \mathrm{i}}{5} \\ \Rightarrow \mathrm{r} \cdot \mathrm{e}^{\mathrm{i} \theta}=\frac{12}{13}-\frac{5}{13} \mathrm{i}-\frac{9}{5}+\frac{7}{5} \mathrm{i} \\ \Rightarrow \mathrm{r} \cdot \mathrm{e}^{\mathrm{i} \theta}=\frac{-57}{65}+\frac{66}{65} \mathrm{i} \\ \therefore \mathrm{r}=\sqrt{\left(\frac{-57}{65}\right)^{2}+\left(\frac{66}{65}\right)^{2}}=\frac{\sqrt{32+19+4356}}{65}=\frac{\sqrt{7605}}{65}=\frac{39 \sqrt{5}}{65}=\frac{3}{\sqrt{5}} \text { (Ans.) } \\ \theta=\pi-\tan ^{-1}\left(\frac{\frac{66}{65}}{\frac{57}{65}}\right)=\pi-\tan ^{-1}\left(\frac{66}{57}\right) \text { (Ans.) } \end{array} ⇒r⋅eiθ=(2+3i)(2−3i)(3+2i)(2−3i)+(1−2i)(1+2i)(1+5i)(1+2i)⇒r⋅eiθ=4−9i26−9i+4i−6i2+1−4i21+2i+5i+10i2⇒r⋅eiθ=4+9(6+6)+i(4−9)+1+4(1−10)+i(2+5)[∵i2=−1]⇒r⋅eiθ=1312−5i+5−9+7i⇒r⋅eiθ=1312−135i−59+57i⇒r⋅eiθ=65−57+6566i∴r=(65−57)2+(6566)2=6532+19+4356=657605=65395=53 (Ans.) θ=π−tan−1(65576566)=π−tan−1(5766) (Ans.)
z=-1+i হলে , z‾ \overline{z} z এর আর্গুমেন্ট কত?
If z=1+iz=1+iz=1+i, then the argument of z2ez−i{ z }^{ 2 }{ e }^{ z-i }z2ez−i is
(a) প্রমান কর যে : (A−B)∩(A−C)=A−(B∪C) \left ( A - B \right ) \cap \left ( A - C \right ) = A - \left ( B \cup C \right ) (A−B)∩(A−C)=A−(B∪C)
(b) নিচের জটিল সংখ্যাটির মডুলাস ও আর্গুমেন্ট নির্ণয় কর ঃ 1+3i 1 + \sqrt{3} i 1+3i
If z1, z2z_{1},\ z_{2}z1, z2 are two complex numbers such that arg(z1+z2)=0arg\left( { z }_{ 1 }+{ z }_{ 2 } \right) =0arg(z1+z2)=0 and Im(z1z2)=0Im\left( { z }_{ 1 }{ z }_{ 2 } \right) =0Im(z1z2)=0, then