ধারা
যোগফল নির্ণয় করোঃ 1+(1+15)+(1+15+152)+(1+15+152+153)+….. 1 + \left ( 1 + \frac{1}{5} \right ) + \left ( 1 + \frac{1}{5} + \frac{1}{5^{2}} \right ) + \left ( 1 + \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}} \right ) + \ldots . . 1+(1+51)+(1+51+521)+(1+51+521+531)+….. +n তম পদ পর্যন্ত
Un=1+15+152+………+15n−1=1(1−15n)1−15=54(1−15n) \mathrm{U}_{\mathrm{n}}=1+\frac{1}{5}+\frac{1}{5^{2}}+\ldots \ldots \ldots+\frac{1}{5^{\mathrm{n}-1}}=\frac{1\left(1-\frac{1}{5^{\mathrm{n}}}\right)}{1-\frac{1}{5}}=\frac{5}{4}\left(1-\frac{1}{5^{\mathrm{n}}}\right) Un=1+51+521+………+5n−11=1−511(1−5n1)=45(1−5n1)
Sn=54(∑1−∑15n)=54[n−(15+152+153+………+15n)]=54[n−15(1+15+………+15n−1)]=54[n−15{54(1−15n)}] \begin{array}{l} S_{n}=\frac{5}{4}\left(\sum 1-\sum \frac{1}{5^{\mathrm{n}}}\right)=\frac{5}{4}\left[\mathrm{n}-\left(\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots \ldots \ldots+\frac{1}{5^{\mathrm{n}}}\right)\right] \\ =\frac{5}{4}\left[\mathrm{n}-\frac{1}{5}\left(1+\frac{1}{5}+\ldots \ldots \ldots+\frac{1}{5^{\mathrm{n}-1}}\right)\right]=\frac{5}{4}\left[\mathrm{n}-\frac{1}{5}\left\{\frac{5}{4}\left(1-\frac{1}{5^{\mathrm{n}}}\right)\right\}\right] \end{array} Sn=45(∑1−∑5n1)=45[n−(51+521+531+………+5n1)]=45[n−51(1+51+………+5n−11)]=45[n−51{45(1−5n1)}]
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
Find the sum of the series ∑r=0n(−1)nnCr[12r+3r22r+7r23r+15r24r+...upto m terms]\displaystyle\sum _{ r=0 }^{ n }{ { \left( -1 \right) }^{ n } } { _{ }^{ n }{ C } }_{ r }\left[ \cfrac { 1 }{ { 2 }^{ r } } +\cfrac { { 3 }^{ r } }{ { 2 }^{ 2r } } +\cfrac { { 7 }^{ r } }{ { 2 }^{ 3r } } +\cfrac { { 15 }^{ r } }{ { 2 }^{ 4r } } +...upto\: m\: terms \right] r=0∑n(−1)nnCr[2r1+22r3r+23r7r+24r15r+...uptomterms]
Let n be a positive integer. Then the value of ∑k=0n(−1)k(nk) \sum_{k = 0}^{n} \left ( - 1 \right )^{k} \left ( \frac{n}{k} \right ) ∑k=0n(−1)k(kn) is --
Number of different terms in the sum (1+x)2009⋅(1+x2)2008+(1+x3)2007, ( 1 + x ) ^ { 2009 } \cdot \left( 1 + x ^ { 2 } \right) ^ { 2008 } + \left( 1 + x ^ { 3 } \right) ^ { 2007 } , (1+x)2009⋅(1+x2)2008+(1+x3)2007, is
Find the value of 1(n−1)!+1(n−3)!3!+1(n−5)!5!+...\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...(n−1)!1+(n−3)!3!1+(n−5)!5!1+...