সমীকরণ সমাধান
যোগফল নির্নয় করোঃ
12+(12+22)+(12+22+32)+…..up→nterms. 1^{2} + \left ( 1^{2} + 2^{2} \right ) + \left ( 1^{2} + 2^{2} + 3^{2} \right ) + \ldots . . u p \to n t e r m s . 12+(12+22)+(12+22+32)+…..up→nterms.
সমাধান: n n n তম পদ, un=12+22+⋯⋯+n2=n(n+1)(2n+1)6=16(n+3n2+2n3) u_{n}=1^{2}+2^{2}+\cdots \cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}=\frac{1}{6}\left(n+3 n^{2}+2 n^{3}\right) un=12+22+⋯⋯+n2=6n(n+1)(2n+1)=61(n+3n2+2n3)
Sn=16∑n+12∑n2+13∑n3=16n(n+1)2+12n(n+1)(2n+1)6+13n2(n+1)24=112n(n+1){1+2n+1+n(n+1)}=112n(n+1)(n2+3n+2)=112n(n+1)(n2+2n+n+2)=112n(n+1)(n+1)(n+2)=112n(n+1)2(n+2)( Ans. ) \begin{array}{l} S_{n}=\frac{1}{6} \sum n+\frac{1}{2} \sum n^{2}+\frac{1}{3} \sum n^{3}=\frac{1}{6} \frac{n(n+1)}{2}+\frac{1}{2} \frac{n(n+1)(2 n+1)}{6}+\frac{1}{3} \frac{n^{2}(n+1)^{2}}{4} \\ =\frac{1}{12} n(n+1)\{1+2 n+1+n(n+1)\}=\frac{1}{12}n(n+1)\left(n^{2}+3 n+2\right)=\frac{1}{12} n(n+1)\left(n^{2}+2 n+n+2\right) \\ =\frac{1}{12} n(n+1)(n+1)(n+2)=\frac{1}{12} n(n+1)^{2}(n+2)(\text { Ans. }) \end{array} Sn=61∑n+21∑n2+31∑n3=612n(n+1)+216n(n+1)(2n+1)+314n2(n+1)2=121n(n+1){1+2n+1+n(n+1)}=121n(n+1)(n2+3n+2)=121n(n+1)(n2+2n+n+2)=121n(n+1)(n+1)(n+2)=121n(n+1)2(n+2)( Ans. )
f(x)=sinx \mathrm{f}(x)=\sin x f(x)=sinx এবং g(x)=cosx g(x)=\cos x g(x)=cosx.
3sec-1(2)=cos-1x হলে x এর মান ত?
cosθ=12 \cos{θ} = \frac{1}{\sqrt{2}} cosθ=21 হলে,θ এর মান কত?
সমাধান কর: 4(sin2θ+cosθ)=5;−π<θ<π4(\sin^2θ+\cosθ)=5;−\pi<θ<\pi4(sin2θ+cosθ)=5;−π<θ<π