ত্রিকোনোমিতিক ফাংশনের যোগজীকরণ

যোজিত ফল নির্ণয় করঃ

(a) exx2+1(x+1)2dx \int e^{x} \frac{x^{2}+1}{(x+1)^{2}} d x

(b) sin5xdx \int \sin ^{5} x d x  

RUET 10-11

(a)exx2+1(x+1)2dx=exx21+2(x+1)2dx=ex{x1x+1+2(x+1)2}dx=ex{x1x+1+ddx(x1x+1)}dx=[ex{f(x)+f(x)}dx=exf(x)+c]=ex(x1)x+1+c [Ans.]  \begin{array}{l} \text{(a)} \int \mathrm{e}^{\mathrm{x}} \frac{\mathrm{x}^{2}+1}{(\mathrm{x}+1)^{2}} \mathrm{dx}=\int \mathrm{e}^{\mathrm{x}} \frac{\mathrm{x}^{2}-1+2}{(\mathrm{x}+1)^{2}} \mathrm{dx}=\int \mathrm{e}^{\mathrm{x}}\left\{\frac{\mathrm{x}-1}{\mathrm{x}+1}+\frac{2}{(\mathrm{x}+1)^{2}}\right\} \mathrm{dx} \\ =\int \mathrm{e}^{\mathrm{x}}\left\{\frac{\mathrm{x}-1}{\mathrm{x}+1}+\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)\right\} \mathrm{dx}=\left[\int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})+\mathrm{c}\right]=\mathrm{e}^{\mathrm{x}} \frac{(\mathrm{x}-1)}{\mathrm{x}+1}+\mathrm{c} \text { [Ans.] }\end{array}

(b)sin5xdx=(sin2x)2sinxdx=(1cos2x)2sinxdx=(1z2)2(dz)[cosx=z रनে, dz=sinxdx]=(12z2+z4)dz=(1+2z2z4)dz=z+23z315z5+c=cosx+23cos3x15cos5x+c [Ans.]  \begin{array}{l}\text{(b)} \int \sin ^{5} \mathrm{xdx}=\int\left(\sin ^{2} \mathrm{x}\right)^{2} \sin \mathrm{xdx}=\int\left(1-\cos ^{2} \mathrm{x}\right)^{2} \sin \mathrm{xdx} \\ =\int\left(1-\mathrm{z}^{2}\right)^{2}(-\mathrm{dz}) \quad[\cos \mathrm{x}=\mathrm{z} \text { रनে, } \mathrm{dz}=-\sin \mathrm{xdx}] \\ =-\int\left(1-2 \mathrm{z}^{2}+\mathrm{z}^{4}\right) \mathrm{dz}=\int\left(-1+2 \mathrm{z}^{2}-\mathrm{z}^{4}\right) \mathrm{dz}=-\mathrm{z}+\frac{2}{3} \mathrm{z}^{3}-\frac{1}{5} \mathrm{z}^{5}+\mathrm{c} \\ =-\cos \mathrm{x}+\frac{2}{3} \cos ^{3} \mathrm{x}-\frac{1}{5} \cos ^{5} \mathrm{x}+\mathrm{c} \quad \text { [Ans.] }\end{array}

ত্রিকোনোমিতিক ফাংশনের যোগজীকরণ টপিকের ওপরে পরীক্ষা দাও