ধারা
1+2x+3x3+4x2+......+(r+1)xr+.......∞ ধারাটির যোগফল কত?1+2x+3x^3+4x^2+......+\left(r+1\right)x^r+.......\infty\ ধারাটির\ যোগফল\ কত?1+2x+3x3+4x2+......+(r+1)xr+.......∞ ধারাটির যোগফল কত?
(1+2x)1\left(1+2x\right)^1(1+2x)1
(1−2x)−1\left(1-2x\right)^{-1}(1−2x)−1
(1+x)−2\left(1+x\right)^{-2}(1+x)−2
(1−x)−2\left(1-x\right)^{-2}(1−x)−2
Find the sum of the series ∑r=0n(−1)nnCr[12r+3r22r+7r23r+15r24r+...upto m terms]\displaystyle\sum _{ r=0 }^{ n }{ { \left( -1 \right) }^{ n } } { _{ }^{ n }{ C } }_{ r }\left[ \cfrac { 1 }{ { 2 }^{ r } } +\cfrac { { 3 }^{ r } }{ { 2 }^{ 2r } } +\cfrac { { 7 }^{ r } }{ { 2 }^{ 3r } } +\cfrac { { 15 }^{ r } }{ { 2 }^{ 4r } } +...upto\: m\: terms \right] r=0∑n(−1)nnCr[2r1+22r3r+23r7r+24r15r+...uptomterms]
Let n be a positive integer. Then the value of ∑k=0n(−1)k(nk) \sum_{k = 0}^{n} \left ( - 1 \right )^{k} \left ( \frac{n}{k} \right ) ∑k=0n(−1)k(kn) is --
The arithmetic mean of nC0, nC1, nC2...., nCn^nC_0 , \ ^nC_1, \ ^nC_2 ...., \ ^nC_nnC0, nC1, nC2...., nCn is ;
Number of different terms in the sum (1+x)2009⋅(1+x2)2008+(1+x3)2007, ( 1 + x ) ^ { 2009 } \cdot \left( 1 + x ^ { 2 } \right) ^ { 2008 } + \left( 1 + x ^ { 3 } \right) ^ { 2007 } , (1+x)2009⋅(1+x2)2008+(1+x3)2007, is