কার্তেসীয় ও পোলার স্থানাঙ্ক
2r sin2(θ/2)=12r\ \sin^2\left(\theta/2\right)=12r sin2(θ/2)=1এর কার্তেসীয় সমীকরণ-
y2=1+2xy^2=1+2xy2=1+2x
y2=4(1−x)y^2=4\left(1-x\right)y2=4(1−x)
y2=4(1+x)y^2=4\left(1+x\right)y2=4(1+x)
x2=4(1+y)x^2=4\left(1+y\right)x2=4(1+y)
সমাধান:(a); r(1−cosθ)=1⇒r−rcosθ=1⇒cos4θ=1⇒r2=(1+rcosθ)2r\left(1-\cos\theta\right)=1\Rightarrow r-r\cos\theta=1\Rightarrow\cos4\theta=1\Rightarrow r^2=\left(1+r\cos\theta\right)^2r(1−cosθ)=1⇒r−rcosθ=1⇒cos4θ=1⇒r2=(1+rcosθ)2
⇒x2+y2=(1+x)2⇒y2=1+2x\Rightarrow x^2+y^2=\left(1+x\right)^2\Rightarrow y^2=1+2x⇒x2+y2=(1+x)2⇒y2=1+2x