দ্বিঘাত ও ত্রিঘাত সমীকরণ সংক্রান্ত
3x3-2x2+1=0 সমীকরণের মূলগুলো α, β, ɤ হলে, ∑α2β এর মান কত?
0
1
কোনেটিই নয়
3x3−2x2+1=3x3−2x2+0x+1=0 3 x^{3}-2 x^{2}+1=3 x^{3}-2 x^{2}+0 x+1=0 3x3−2x2+1=3x3−2x2+0x+1=0
∴ \therefore ∴ মূলগুলি α,β,γ \alpha, \beta, \gamma α,β,γ
∴α+β+γ=23,αβγ=−13,αβ+βγ+γα=0 এখন, ∑α2β=α2β+α2γ+β2γ+β2α+γ2α+γ2β=(α2β+αβ2+αβγ)+(αβγ+β2γ+βγ2)+(α2γ+αβγ+αγ2)−3αβγ=αβ(α+β+γ)+βγ(α+β+γ)+γα(α+β+γ)−3αβγ=(α+β+γ)(αβ+βγ+γα)−3αβγ=23⋅0−3(−13)=1 \begin{aligned} \therefore \alpha & +\beta+\gamma=\frac{2}{3}, \alpha \beta \gamma=-\frac{1}{3}, \alpha \beta+\beta \gamma+\gamma \alpha=0 \\ \text { এখন, } & \sum \alpha^{2} \beta=\alpha^{2} \beta+\alpha^{2} \gamma+\beta^{2} \gamma+\beta^{2} \alpha+\gamma^{2} \alpha+\gamma^{2} \beta \\ = & \left(\alpha^{2} \beta+\alpha \beta^{2}+\alpha \beta \gamma\right)+\left(\alpha \beta \gamma+\beta^{2} \gamma+\beta \gamma^{2}\right) \\ & +\left(\alpha^{2} \gamma+\alpha \beta \gamma+\alpha \gamma^{2}\right)-3 \alpha \beta \gamma \\ = & \alpha \beta(\alpha+\beta+\gamma)+\beta \gamma(\alpha+\beta+\gamma) \\ & +\gamma \alpha(\alpha+\beta+\gamma)-3 \alpha \beta \gamma \\ = & (\alpha+\beta+\gamma)(\alpha \beta+\beta \gamma+\gamma \alpha)-3 \alpha \beta \gamma \\ = & \frac{2}{3} \cdot 0-3\left(\frac{-1}{3}\right)=1 \end{aligned} ∴α এখন, ====+β+γ=32,αβγ=−31,αβ+βγ+γα=0∑α2β=α2β+α2γ+β2γ+β2α+γ2α+γ2β(α2β+αβ2+αβγ)+(αβγ+β2γ+βγ2)+(α2γ+αβγ+αγ2)−3αβγαβ(α+β+γ)+βγ(α+β+γ)+γα(α+β+γ)−3αβγ(α+β+γ)(αβ+βγ+γα)−3αβγ32⋅0−3(3−1)=1
দৃশ্যকল্প-১ : 3x2−4x+1=03 \mathrm{x}^2-4 \mathrm{x}+1=03x2−4x+1=0 সমীকরণের মূলদ্বয় a\mathrm{a}a ও b\mathrm{b}b.
দৃশ্যকল্প-২ : x2−qx+r=0x^2-q x+r=0x2−qx+r=0 সমীকরণের মূল দুইটি α\alphaα ও β\betaβ.
q(x)=lx2+mx+n,r(x)=nx2+mx+l \mathrm{q}(\mathrm{x})=l \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}, \mathrm{r}(\mathrm{x})=\mathrm{nx}^{2}+\mathrm{mx}+l q(x)=lx2+mx+n,r(x)=nx2+mx+l এবং z=−2−23i z=-2-2 \sqrt{3} i z=−2−23i একটি জটিল রাশি।
F(x)=27x2+6x−(m+2),P(x)=rx2−2nx+4m F(x)=27 x^{2}+6 x-(m+2), P(x)=r x^{2}-2 n x+4 m F(x)=27x2+6x−(m+2),P(x)=rx2−2nx+4m এবং Q(x)=mx2+nx+r Q(x)=m x^{2}+n x+r Q(x)=mx2+nx+r
দৃশ্যকর-১: p(x)=(a+b+c)x2+(b+2c)x+c \mathrm{p}(\mathrm{x})=(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}^{2}+(\mathrm{b}+2 \mathrm{c}) \mathrm{x}+ \mathrm{c} p(x)=(a+b+c)x2+(b+2c)x+c
দৃশ্যকর-২: ω \omega ω এবং ω2 \omega^{2} ω2 এককের দুইটি জটিল ঘনমূল।