অব্যক্ত ফাংশন (Implicit Function)
(a) মান নির্ণয় কর : dy/dx, যখন y=cot−1{(1+x2−x)} y = \cot^{- 1}{\left \lbrace \left ( \sqrt{1 + x^{2}} - x \right ) \right \rbrace} y=cot−1{(1+x2−x)}
(b) মান নির্ণয় কর : dy/dx, যখন xaya=(x−y)a+b x^{a} y^{a} = \left ( x - y \right )^{a + b} xaya=(x−y)a+b
y=cot−1(1+x2−x) y=\cot ^{-1}\left(\sqrt{1+x^{2}}-x\right) y=cot−1(1+x2−x)
ধরি, x=tanθ x=\tan \theta x=tanθ
y=cot−1(secθ−tanθ)=cot−1{1−sinθcosθ}=cot−1{sin2θ2−2sinθ2cosθ2+cos2θ2cos2θ2−sin2θ2}=cot−1{cosθ2−sinθ2cosθ2+sinθ2}=cot−1{1−tanθ21+tanθ2}=cot−1{tanπ4−tanθ21+tanπ4tanθ2}=cot−1{tan(π4−θ2)}=cot−1{cot{π2−π4+θ2}}=π4+θ2=π4+tan−1x2∴dydx=12×11+x2=12(1+x2) (Ans.) \begin{array}{l} y=\cot ^{-1}(\sec \theta-\tan \theta)=\cot ^{-1}\left\{\frac{1-\sin \theta}{\cos \theta}\right\}=\cot ^{-1}\left\{\frac{\sin ^{2} \frac{\theta}{2}-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}}\right\} \\ =\cot ^{-1}\left\{\frac{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}\right\}=\cot ^{-1}\left\{\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}\right\}=\cot ^{-1}\left\{\frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}\right\}=\cot ^{-1}\left\{\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right\} \\ =\cot ^{-1}\left\{\cot \left\{\frac{\pi}{2}-\frac{\pi}{4}+\frac{\theta}{2}\right\}\right\}=\frac{\pi}{4}+\frac{\theta}{2}=\frac{\pi}{4}+\frac{\tan ^{-1} x}{2} \therefore \frac{d y}{d x}=\frac{1}{2} \times \frac{1}{1+x^{2}}=\frac{1}{2\left(1+x^{2}\right)} \text { (Ans.) } \end{array} y=cot−1(secθ−tanθ)=cot−1{cosθ1−sinθ}=cot−1{cos22θ−sin22θsin22θ−2sin2θcos2θ+cos22θ}=cot−1{cos2θ+sin2θcos2θ−sin2θ}=cot−1{1+tan2θ1−tan2θ}=cot−1{1+tan4πtan2θtan4π−tan2θ}=cot−1{tan(4π−2θ)}=cot−1{cot{2π−4π+2θ}}=4π+2θ=4π+2tan−1x∴dxdy=21×1+x21=2(1+x2)1 (Ans.)
(b) dy/dx, যখন xayb=(x−y)a+b x^{a} y^{b}=(x-y)^{a+b} xayb=(x−y)a+b
xayb=(x−y)a+b⇒ln(xa⋅yb)=ln(x−y)a+b⇒lnxa+lnyb=(a+b)ln(x−y)⇒alnx+blny=(a+b)ln(x−y)⇒ax+by⋅dydx=a+bx−y(1−dydx)⇒ax+by⋅dydx=a+bx−y−a+bx−y⋅dydx⇒by⋅dydx+a+bx−y⋅dydx=a+bx−y−ax⇒(by+a+bx−y)dydx=ax+bx−ax+ayx(x−y)⇒{bx−by+ay+byy(x−y)}dydx=bx+ayx(x−y)⇒dydx=yx⋅bx+aybx+ay[x≠y]∴dydx=yx \begin{array}{l} x^{a} y^{b}=(x-y)^{a+b} \Rightarrow \ln \left(x^{a} \cdot y^{b}\right)=\ln (x-y)^{a+b} \Rightarrow \ln x^{a}+\ln y^{b}=(a+b) \ln (x-y) \\ \Rightarrow a \ln x+b \ln y=(a+b) \ln (x-y) \Rightarrow \frac{a}{x}+\frac{b}{y} \cdot \frac{d y}{d x}=\frac{a+b}{x-y}\left(1-\frac{d y}{d x}\right) \Rightarrow \frac{a}{x}+\frac{b}{y} \cdot \frac{d y}{d x}=\frac{a+b}{x-y}-\frac{a+b}{x-y} \cdot \frac{d y}{d x} \\ \Rightarrow \frac{b}{y} \cdot \frac{d y}{d x}+\frac{a+b}{x-y} \cdot \frac{d y}{d x}=\frac{a+b}{x-y}-\frac{a}{x} \Rightarrow\left(\frac{b}{y}+\frac{a+b}{x-y}\right) \frac{d y}{d x}=\frac{a x+b x-a x+a y}{x(x-y)} \\ \Rightarrow\left\{\frac{b x-b y+a y+b y}{y(x-y)}\right\} \frac{d y}{d x}=\frac{b x+a y}{x(x-y)} \Rightarrow \frac{d y}{d x}=\frac{y}{x} \cdot \frac{b x+a y}{b x+a y}[x \neq y] \therefore \frac{d y}{d x}=\frac{y}{x} \end{array} xayb=(x−y)a+b⇒ln(xa⋅yb)=ln(x−y)a+b⇒lnxa+lnyb=(a+b)ln(x−y)⇒alnx+blny=(a+b)ln(x−y)⇒xa+yb⋅dxdy=x−ya+b(1−dxdy)⇒xa+yb⋅dxdy=x−ya+b−x−ya+b⋅dxdy⇒yb⋅dxdy+x−ya+b⋅dxdy=x−ya+b−xa⇒(yb+x−ya+b)dxdy=x(x−y)ax+bx−ax+ay⇒{y(x−y)bx−by+ay+by}dxdy=x(x−y)bx+ay⇒dxdy=xy⋅bx+aybx+ay[x=y]∴dxdy=xy
যদি y=sin3xcos2x তবে yn এর মান নীচের কোনটি?
f(x)=cosx f(x)=\cos x f(x)=cosx এবং g(x)=x1+y+y1+x g(x)=x \sqrt{1+y}+y \sqrt{1+x} g(x)=x1+y+y1+x যেখানে x≠y x \neq y x=y
(i) ey={e3x(3x−13x+1)52} \mathrm{e}^{\mathrm{y}}=\left\{\mathrm{e}^{3 x}\left(\frac{3 \mathrm{x}-1}{3 \mathrm{x}+1}\right)^{\frac{5}{2}}\right\} ey={e3x(3x+13x−1)25},(ii) y=sin3x y=\sin 3 x y=sin3x