অব্যক্ত ফাংশন (Implicit Function)

(a) মান নির্ণয় কর : dy/dx, যখন   y=cot1{(1+x2x)} y = \cot^{- 1}{\left \lbrace \left ( \sqrt{1 + x^{2}} - x \right ) \right \rbrace}

(b) মান নির্ণয় কর : dy/dx, যখন  xaya=(xy)a+b x^{a} y^{a} = \left ( x - y \right )^{a + b}  

RUET 11-12

y=cot1(1+x2x) y=\cot ^{-1}\left(\sqrt{1+x^{2}}-x\right)

ধরি, x=tanθ x=\tan \theta

y=cot1(secθtanθ)=cot1{1sinθcosθ}=cot1{sin2θ22sinθ2cosθ2+cos2θ2cos2θ2sin2θ2}=cot1{cosθ2sinθ2cosθ2+sinθ2}=cot1{1tanθ21+tanθ2}=cot1{tanπ4tanθ21+tanπ4tanθ2}=cot1{tan(π4θ2)}=cot1{cot{π2π4+θ2}}=π4+θ2=π4+tan1x2dydx=12×11+x2=12(1+x2) (Ans.)  \begin{array}{l} y=\cot ^{-1}(\sec \theta-\tan \theta)=\cot ^{-1}\left\{\frac{1-\sin \theta}{\cos \theta}\right\}=\cot ^{-1}\left\{\frac{\sin ^{2} \frac{\theta}{2}-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}}\right\} \\ =\cot ^{-1}\left\{\frac{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}\right\}=\cot ^{-1}\left\{\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}\right\}=\cot ^{-1}\left\{\frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}\right\}=\cot ^{-1}\left\{\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right\} \\ =\cot ^{-1}\left\{\cot \left\{\frac{\pi}{2}-\frac{\pi}{4}+\frac{\theta}{2}\right\}\right\}=\frac{\pi}{4}+\frac{\theta}{2}=\frac{\pi}{4}+\frac{\tan ^{-1} x}{2} \therefore \frac{d y}{d x}=\frac{1}{2} \times \frac{1}{1+x^{2}}=\frac{1}{2\left(1+x^{2}\right)} \text { (Ans.) } \end{array}

(b) dy/dx, যখন xayb=(xy)a+b x^{a} y^{b}=(x-y)^{a+b}

xayb=(xy)a+bln(xayb)=ln(xy)a+blnxa+lnyb=(a+b)ln(xy)alnx+blny=(a+b)ln(xy)ax+bydydx=a+bxy(1dydx)ax+bydydx=a+bxya+bxydydxbydydx+a+bxydydx=a+bxyax(by+a+bxy)dydx=ax+bxax+ayx(xy){bxby+ay+byy(xy)}dydx=bx+ayx(xy)dydx=yxbx+aybx+ay[xy]dydx=yx \begin{array}{l} x^{a} y^{b}=(x-y)^{a+b} \Rightarrow \ln \left(x^{a} \cdot y^{b}\right)=\ln (x-y)^{a+b} \Rightarrow \ln x^{a}+\ln y^{b}=(a+b) \ln (x-y) \\ \Rightarrow a \ln x+b \ln y=(a+b) \ln (x-y) \Rightarrow \frac{a}{x}+\frac{b}{y} \cdot \frac{d y}{d x}=\frac{a+b}{x-y}\left(1-\frac{d y}{d x}\right) \Rightarrow \frac{a}{x}+\frac{b}{y} \cdot \frac{d y}{d x}=\frac{a+b}{x-y}-\frac{a+b}{x-y} \cdot \frac{d y}{d x} \\ \Rightarrow \frac{b}{y} \cdot \frac{d y}{d x}+\frac{a+b}{x-y} \cdot \frac{d y}{d x}=\frac{a+b}{x-y}-\frac{a}{x} \Rightarrow\left(\frac{b}{y}+\frac{a+b}{x-y}\right) \frac{d y}{d x}=\frac{a x+b x-a x+a y}{x(x-y)} \\ \Rightarrow\left\{\frac{b x-b y+a y+b y}{y(x-y)}\right\} \frac{d y}{d x}=\frac{b x+a y}{x(x-y)} \Rightarrow \frac{d y}{d x}=\frac{y}{x} \cdot \frac{b x+a y}{b x+a y}[x \neq y] \therefore \frac{d y}{d x}=\frac{y}{x} \end{array}

অব্যক্ত ফাংশন (Implicit Function) টপিকের ওপরে পরীক্ষা দাও