সমীকরণ সমাধান

(a) মান নির্নয় করো :   cosecθ+cotθ=3 \cos{e} c \theta + \cot{\theta} = \sqrt{3}  

(b) যদি   sin1x+sin1y=π2 \sin^{- 1}{x} + \sin^{- 1}{y} = \frac{\pi}{2} হয় , তাহলে দেখাও যে x²+y²=1

RUET 08-09

a)

cosecθ+cotθ=3 \operatorname{cosec} \theta+\cot \theta=\sqrt{3}

1+cosθsinθ=32cos2θ22sinθ2cosθ2=3cosθ2(cosθ23sinθ2)=0\begin{array}{l}\Rightarrow \frac{1+\cos \theta}{\sin \theta}=\sqrt{3} \Rightarrow \frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}=\sqrt{3} \\\Rightarrow \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}-\sqrt{3} \sin \frac{\theta}{2}\right)=0\end{array}

হয়, cosθ23sinθ2=0 \cos \frac{\theta}{2}-\sqrt{3} \sin \frac{\theta}{2}=0 \quad অথবা, cosθ2=0 \cos \frac{\theta}{2}=0

cotθ/2=3θ=(2n+1)π\Rightarrow \cot \theta / 2=\sqrt{3} \quad \therefore \theta=(2 n+1) \pi

tanθ2=13=tanπ6 \Rightarrow \tan \frac{\theta}{2}=\frac{1}{\sqrt{3}}=\tan \frac{\pi}{6}

θ2=nπ+π6θ=2nπ+π3 \therefore \frac{\theta}{2}=\mathrm{n} \pi+\frac{\pi}{6} \therefore \theta=2 \mathrm{n} \pi+\frac{\pi}{3}

b)

sin1x+sin1y=π2 \sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}

x=sin(π2sin1y)=cos(sin1y)=cos(cos11y2)x=1y2x2+y2=1 Proved. \begin{array}{l}\Rightarrow x=\sin \left(\frac{\pi}{2}-\sin ^{-1} y\right)=\cos \left(\sin ^{-1} y\right) \\=\cos \left(\cos ^{-1} \sqrt{1-y^{2}}\right) \\\Rightarrow x=\sqrt{1-y^{2}} \cdot \therefore x^{2}+y^{2}=1 \text { Proved. } \end{array}

সমীকরণ সমাধান টপিকের ওপরে পরীক্ষা দাও