মান নির্ণয়
acosθ+bsinθ=c a \cos \theta+b \sin \theta=\mathrm{c} acosθ+bsinθ=c সমীকরণটি θ \theta θ এর দুইটি ভিন্ন মান α,β \alpha, \beta α,β দ্বারা সিদ্ধ হলে , sin(α+β)=? \sin (\alpha+\beta)=? sin(α+β)=?
2aba2+b2\frac{2 a b}{a^{2}+b^{2}}a2+b22ab
aba2+b2\frac{ a b}{a^{2}+b^{2}}a2+b2ab
2aba2−b2\frac{2 a b}{a^{2}-b^{2}}a2−b22ab
−2aba2+b2\frac{-2 a b}{a^{2}+b^{2}}a2+b2−2ab
Solve: cosθ+bsinθ=c \cos \theta+\mathrm{b} \sin \theta=\mathrm{c} cosθ+bsinθ=c সমীকরণটি θ \theta θ এর দুইটি ভিন্ন মান α≪β \alpha \ll \beta α≪β দ্বারা সিদ্ধ বলে, acosα+bsinα=c a \cos \alpha+b \sin \alpha=c acosα+bsinα=cএবং acosβ+bsinβ=c a \cos \beta+b \sin \beta=c acosβ+bsinβ=c
∴acosα+bsinα=acosβ+bsinβ⇒a(cosα−cosβ)=b(sinβ−sinα)⇒a⋅2sin12(α+β)sin12(β−α)=b⋅2cos12(α+β)sin12(β−α)α≠β sin12(β−α)≠0∴asin12(α+β)=bcos12(α+β)⇒tan12(α+β)=ba \begin{array}{l} \therefore \quad a \cos \alpha+b \sin \alpha=a \cos \beta+b \sin \beta \\ \Rightarrow \quad a(\cos \alpha-\cos \beta)=b(\sin \beta-\sin \alpha) \\ \Rightarrow a \cdot 2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha) \\ =b \cdot 2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha) \\ \alpha \neq \beta \text { } \sin \frac{1}{2}(\beta-\alpha) \neq 0 \\ \therefore a \sin \frac{1}{2}(\alpha+\beta)=b \cos \frac{1}{2}(\alpha+\beta) \\ \Rightarrow \tan \frac{1}{2}(\alpha+\beta)=\frac{b}{a} \end{array} ∴acosα+bsinα=acosβ+bsinβ⇒a(cosα−cosβ)=b(sinβ−sinα)⇒a⋅2sin21(α+β)sin21(β−α)=b⋅2cos21(α+β)sin21(β−α)α=β sin21(β−α)=0∴asin21(α+β)=bcos21(α+β)⇒tan21(α+β)=ab
এখন, sin(α+β)=sin2⋅12(α+β) \sin (\alpha+\beta)=\sin 2 \cdot \frac{1}{2}(\alpha+\beta) sin(α+β)=sin2⋅21(α+β)
=2tan12(α+β)1+tan212(α+β)=−2ba1+(ba)2=2ba×a2a2+b2=2aba2+b2 \begin{array}{l} =\frac{2 \tan \frac{1}{2}(\alpha+\beta)}{1+\tan ^{2} \frac{1}{2}(\alpha+\beta)}=-\frac{2 \frac{b}{a}}{1+\left(\frac{b}{a}\right)^{2}} \\ =\frac{2 b}{a} \times \frac{a^{2}}{a^{2}+b^{2}}=\frac{2 a b}{a^{2}+b^{2}} \end{array} =1+tan221(α+β)2tan21(α+β)=−1+(ab)22ab=a2b×a2+b2a2=a2+b22ab
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
যদি π2<θ<πএবংsinθ=35হয়, \frac{\pi}{2} < \theta < \pi এ ব ং \sin{\theta} = \frac{3}{5} হ য় , 2π<θ<πএবংsinθ=53হয়, তবে cosθ এর মান কত?
tan105∘=tan(60∘+45∘)\tan 105^{\circ}=\tan \left(60^{\circ}+45^{\circ}\right)tan105∘=tan(60∘+45∘) এর মান কত?
If cosθ=513\displaystyle \cos \theta =\frac{5}{13}cosθ=135, where θ\theta θ being an acute angle, then the value of cosθ+5cotθcosec θ−cosθ\dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta }cosec θ−cosθcosθ+5cotθ will be