উপবৃত্ত

A line is at a constant distance cc from the origin and meets the coordinates axes in AA and BB. The locus of the centre of the circle passing through O,A,BO, A, B is

Let the equation of line be

xa+yb=1\displaystyle \frac{x}{a}+\frac{y}{b}=1

where aa and bb are the x-intercept and y-intercept.

Then the coordinates of A and B are (a,0)(a,0) and (0,b)(0,b)

Distance of origin to the line is cc

c=1(1a)2+(1b)2\Rightarrow c=\displaystyle \frac{|-1|}{\sqrt{(\dfrac{1}{a})^2+(\dfrac{1}{b})^2}}

1c=1a2+1b2\Rightarrow \displaystyle \frac{1}{c}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}

1c2=1a2+1b2\Rightarrow \displaystyle \frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2} ....(1)

Let the center of circle through O, A, B be (h,k)(h,k)

Points O(0,0),A(a,0),(0,b)O(0,0), A(a,0),(0,b) forms a right triangle.

So, the center of circle is the mid-point of AB i.e.(a+02,b+02)\displaystyle(\frac{a+0}{2},\frac{b+0}{2})

h=a2,k=b2\Rightarrow h=\displaystyle \frac{a}{2}, k=\frac{b}{2}

a=2h,b=2k\Rightarrow a=2h, b=2k

Substitute this value in (1), we get

1c2=14h2+14k2 \displaystyle \frac{1}{c^2}=\frac{1}{4h^2}+\frac{1}{4k^2}

4c2=1h2+1k2\Rightarrow \displaystyle \frac{4}{c^2}=\frac{1}{h^2}+\frac{1}{k^2}

4c2=x2+y2\Rightarrow 4c^{-2}=x^{-2}+y^{-2} (Replacing h,kh,k by x,yx,y )

উপবৃত্ত টপিকের ওপরে পরীক্ষা দাও