পর্যায়ক্রমিক অন্তরজ (Successive Differentiation)
(a) y=secx হলে দেখাও যে y2=y(2y2−1) y_{2} = y\left(2 y^{2}-1\right)y2=y(2y2−1)
(b) xy+yx=0 x^{y} + y^{x} = 0 xy+yx=0 সমীকরন হতে dydx \frac{dy}{dx} dxdy নির্ণয় কর।
(a) y=secx∴y1=secxtanx \mathrm{y}=\sec \mathrm{x} \quad \therefore \mathrm{y}_{1}=\sec \mathrm{x} \tan \mathrm{x} y=secx∴y1=secxtanx
y2=secx⋅sec2x+tanx(secx⋅tanx)=secx(sec2x+tan2x)=secx(2sec2x−1)=y(2y2−1)( Showed ) \begin{array}{l} y_{2}=\sec x \cdot \sec ^{2} x+\tan x(\sec x \cdot \tan x)=\sec x\left(\sec ^{2} x+\tan ^{2} x\right) \\ =\sec x\left(2 \sec ^{2} x-1\right)=y\left(2 y^{2}-1\right) \quad(\text { Showed }) \end{array} y2=secx⋅sec2x+tanx(secx⋅tanx)=secx(sec2x+tan2x)=secx(2sec2x−1)=y(2y2−1)( Showed )
(b) xy+yx=0 \mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=0 xy+yx=0 সমীকরণ হতে dydx \frac{\mathrm{dy}}{\mathrm{dx}} dxdy निর্ণয় কর।
xy+yx=0∴xy=−yx⇒ylnx=−xlny⇒y1x+lnxdydx=−x1ydydx−lny \mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=0 \quad \therefore \mathrm{x}^{\mathrm{y}}=-\mathrm{y}^{\mathrm{x}} \Rightarrow \mathrm{y} \ln \mathrm{x}=-\mathrm{x} \ln \mathrm{y} \Rightarrow \mathrm{y} \frac{1}{\mathrm{x}}+\ln \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{x} \frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}-\ln \mathrm{y} xy+yx=0∴xy=−yx⇒ylnx=−xlny⇒yx1+lnxdxdy=−xy1dxdy−lny
dydx(lnx+xy)=−lny−yx⇒dydx=−xlny−yxlnx+xx‾=−y(xlny+y)x(ylnx+x) \frac{d y}{d x}\left(\ln x+\frac{x}{y}\right)=-\ln y-\frac{y}{x} \Rightarrow \frac{d y}{d x}=\frac{\frac{-x \ln y-y}{x \ln x+x}}{\underline{x}}=\frac{-y(x \ln y+y)}{x(y \ln x+x)} dxdy(lnx+yx)=−lny−xy⇒dxdy=xxlnx+x−xlny−y=x(ylnx+x)−y(xlny+y)
f(x)=lnx,g(x)=(x+1+x2)f(x)=\ln x, g(x)=\left(x+\sqrt{1+x^{2}}\right)f(x)=lnx,g(x)=(x+1+x2)
y=cos2x y=\sqrt{\cos 2 x} y=cos2x হলে, (yy1)2=? \left(y y_{1}\right)^{2}= ? (yy1)2=?
y=1x=x−1 y=\frac{1}{x}=x^{-1} y=x1=x−1 এর n n n তম অন্তরক সহগ নিচের কোনটি ?
y=ex y=e^{x} y=ex হলে, y4 \mathrm{y}_{4} y4 কত ?