পর্যায়ক্রমিক অন্তরজ (Successive Differentiation)

(a) y=secx হলে দেখাও যে   y2=y(2y21) y_{2} = y\left(2 y^{2}-1\right)

(b) xy+yx=0 x^{y} + y^{x} = 0 সমীকরন হতে dydx \frac{dy}{dx} নির্ণয় কর।

CUET 07-08

(a) y=secxy1=secxtanx \mathrm{y}=\sec \mathrm{x} \quad \therefore \mathrm{y}_{1}=\sec \mathrm{x} \tan \mathrm{x}

y2=secxsec2x+tanx(secxtanx)=secx(sec2x+tan2x)=secx(2sec2x1)=y(2y21)( Showed ) \begin{array}{l} y_{2}=\sec x \cdot \sec ^{2} x+\tan x(\sec x \cdot \tan x)=\sec x\left(\sec ^{2} x+\tan ^{2} x\right) \\ =\sec x\left(2 \sec ^{2} x-1\right)=y\left(2 y^{2}-1\right) \quad(\text { Showed }) \end{array}

(b) xy+yx=0 \mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=0 সমীকরণ হতে dydx \frac{\mathrm{dy}}{\mathrm{dx}} निর্ণয় কর।

xy+yx=0xy=yxylnx=xlnyy1x+lnxdydx=x1ydydxlny \mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=0 \quad \therefore \mathrm{x}^{\mathrm{y}}=-\mathrm{y}^{\mathrm{x}} \Rightarrow \mathrm{y} \ln \mathrm{x}=-\mathrm{x} \ln \mathrm{y} \Rightarrow \mathrm{y} \frac{1}{\mathrm{x}}+\ln \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{x} \frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}-\ln \mathrm{y}

dydx(lnx+xy)=lnyyxdydx=xlnyyxlnx+xx=y(xlny+y)x(ylnx+x) \frac{d y}{d x}\left(\ln x+\frac{x}{y}\right)=-\ln y-\frac{y}{x} \Rightarrow \frac{d y}{d x}=\frac{\frac{-x \ln y-y}{x \ln x+x}}{\underline{x}}=\frac{-y(x \ln y+y)}{x(y \ln x+x)}

পর্যায়ক্রমিক অন্তরজ (Successive Differentiation) টপিকের ওপরে পরীক্ষা দাও