নির্দিষ্ট যোগজ
A=acos2 θ \theta θ +bsin2 θ \theta θ
∫0π2dθA \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{A} ∫02πAdθ এর মান কোনটি?
π4ab \frac{\pi}{4 \sqrt{a b}} 4abπ
π2ab \frac{\pi}{2 \sqrt{a b}} 2abπ
πab \frac{\pi}{\sqrt{a b}} abπ
∫0π2dθacos2θ+bsin2θ=∫0π2sec2θdθa+btan2θ \begin{array}{l} \text { } \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d} \theta}{\mathrm{acos}^{2} \theta+\mathrm{b} \sin ^{2} \theta} \\ =\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\mathrm{a}+\mathrm{btan}^{2} \theta} \end{array} ∫02πacos2θ+bsin2θdθ=∫02πa+btan2θsec2θdθ
ধরি, tanθ=z \tan \theta=\mathrm{z} tanθ=z
∴sec2θdθ=dz এখন, ∫0∞dza+bz2=[1abtan−1(baz)]0∞∣তখन θ=0 তখন z=0θ=π2 তখन z=∞=1ab×π2=π2ab \begin{array}{l} \therefore \sec ^{2} \theta d \theta=d z \\ \text { এখন, } \int_{0}^{\infty} \frac{d z}{a+b z^{2}} \\ =\left.\left[\frac{1}{\sqrt{a b}} \tan ^{-1}\left(\sqrt{\frac{b}{a}} z\right)\right]_{0}^{\infty}\right|_{\text {তখन } \theta=0 \text { তখন } z=0} \theta=\frac{\pi}{2} \text { তখन } z=\infty \\ =\frac{1}{\sqrt{a b}} \times \frac{\pi}{2}=\frac{\pi}{2 \sqrt{a b}} \end{array} ∴sec2θdθ=dz এখন, ∫0∞a+bz2dz=[ab1tan−1(abz)]0∞তখन θ=0 তখন z=0θ=2π তখन z=∞=ab1×2π=2abπ
∫0π/2cosxdx= কত? \int_{0}^{\pi / 2} \cos x d x=\text { কত? } ∫0π/2cosxdx= কত?
f(x)= {x+1forx=0 \left \lbrace \begin{matrix} x + 1 & f{\quad\text{or}\quad} & x & = & 0 \end{matrix} \right . {x+1forx=0 হলে-
∫−1−12f(x)dx=18 \int_{- 1}^{- \frac{1}{2}} f{\left ( x \right )} dx = \frac{1}{8} ∫−1−21f(x)dx=81
∫01f(x)dx=0 \int_{0}^{1} f{\left ( x \right )} dx = 0 ∫01f(x)dx=0
f(−1)=1 f{\left ( - 1 \right )} = 1 f(−1)=1
নিচের কোনটি সঠিক?
∫1e2dxx(1+lnx) \int_{1}^{e^{2}} \frac{dx}{x \left ( 1 + \ln{x} \right )} ∫1e2x(1+lnx)dx এর মান কত?
α এর মান কত হলে ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx \int_{1}^{\alpha} \left \lbrace 2 + x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx + \int_{1}^{\alpha} \left \lbrace 3 - x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx =30