মান নির্ণয়
asin(x+θ)=bsin(x−θ)a\sin{\left(x+\theta\right)}=b\sin{\left(x-\theta\right)}asin(x+θ)=bsin(x−θ) হলে (a−b) tanx+(a+b)tanθ=?\left(a-b\right)\ \tan{x}+\left(a+b\right)\tan{\theta}=?(a−b) tanx+(a+b)tanθ=?
tanx\tan{x} tanx
2x2x 2x
2θ2\theta 2θ
0
sin(x−θ)sin(x+θ)=ab⇒sin(x−θ)+sin(x+θ)sin(x−θ)−sin(x+θ)=a+ba−b⇒2sinxcosθ−2cosxsinθ=a+ba−b⇒−tanxtanθ=a+ba−b⇒(a−b)tanx+(a+b)tanθ=0\frac{\sin{\left(x-\theta\right)}}{\sin{\left(x+\theta\right)}}=\frac{a}{b}\Rightarrow\frac{\sin{\left(x-\theta\right)}+\sin{\left(x+\theta\right)}}{\sin{\left(x-\theta\right)-\sin{\left(x+\theta\right)}}}=\frac{a+b}{a-b} \\\\\Rightarrow\frac{2\sin{x}\cos{\theta}}{-2\cos{x\sin{\theta}}}=\frac{a+b}{a-b}\Rightarrow-\frac{\tan{x}}{\tan{\theta}}=\frac{a+b}{a-b} \\\\\Rightarrow\left(a-b\right)\tan{x}+\left(a+b\right)\tan{\theta}=0 sin(x+θ)sin(x−θ)=ba⇒sin(x−θ)−sin(x+θ)sin(x−θ)+sin(x+θ)=a−ba+b⇒−2cosxsinθ2sinxcosθ=a−ba+b⇒−tanθtanx=a−ba+b⇒(a−b)tanx+(a+b)tanθ=0
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
যদি π2<θ<πএবংsinθ=35হয়, \frac{\pi}{2} < \theta < \pi এ ব ং \sin{\theta} = \frac{3}{5} হ য় , 2π<θ<πএবংsinθ=53হয়, তবে cosθ এর মান কত?
tan105∘=tan(60∘+45∘)\tan 105^{\circ}=\tan \left(60^{\circ}+45^{\circ}\right)tan105∘=tan(60∘+45∘) এর মান কত?
If cosθ=513\displaystyle \cos \theta =\frac{5}{13}cosθ=135, where θ\theta θ being an acute angle, then the value of cosθ+5cotθcosec θ−cosθ\dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta }cosec θ−cosθcosθ+5cotθ will be