মান নির্ণয়

asin(x+θ)=bsin(xθ)a\sin{\left(x+\theta\right)}=b\sin{\left(x-\theta\right)} হলে (ab) tanx+(a+b)tanθ=?\left(a-b\right)\ \tan{x}+\left(a+b\right)\tan{\theta}=?

sin(xθ)sin(x+θ)=absin(xθ)+sin(x+θ)sin(xθ)sin(x+θ)=a+bab2sinxcosθ2cosxsinθ=a+babtanxtanθ=a+bab(ab)tanx+(a+b)tanθ=0\frac{\sin{\left(x-\theta\right)}}{\sin{\left(x+\theta\right)}}=\frac{a}{b}\Rightarrow\frac{\sin{\left(x-\theta\right)}+\sin{\left(x+\theta\right)}}{\sin{\left(x-\theta\right)-\sin{\left(x+\theta\right)}}}=\frac{a+b}{a-b} \\\\\Rightarrow\frac{2\sin{x}\cos{\theta}}{-2\cos{x\sin{\theta}}}=\frac{a+b}{a-b}\Rightarrow-\frac{\tan{x}}{\tan{\theta}}=\frac{a+b}{a-b} \\\\\Rightarrow\left(a-b\right)\tan{x}+\left(a+b\right)\tan{\theta}=0

মান নির্ণয় টপিকের ওপরে পরীক্ষা দাও