অভিকর্ষজ ত্বরণ g এর পরিবর্তন

Assuming the earth to be a uniform sphere of radius 64006400km and density 5.55.5 g/c.c, find the value of g on its surface. G=6.66×1011Nm2kg2G=6.66\times 10^{-11}Nm^2kg^{-2}.

হানি নাটস

Here, R=6400×103m=6.4×106mR=6400\times 10^3m=6.4\times 10^6m

ρ=5.5g/c.c.=5.5×103\rho =5.5g/c.c. = 5.5\times 10^3 kg/m3kg/m^3

Now, g=GMR2=GR2×43πR3×ρg=\dfrac{GM}{R^2}=\dfrac{G}{R^2}\times \dfrac{4}{3}\pi R^3\times \rho

=43πGRρ=\dfrac{4}{3}\pi GR\rho

=43×227×6.66×1011×6.4×106×5.5×103=\dfrac{4}{3}\times \dfrac{22}{7}\times 6.66\times 10^{-11}\times 6.4\times 10^6\times 5.5\times 10^3

=9.82ms2=9.82ms^{-2}.

অভিকর্ষজ ত্বরণ g এর পরিবর্তন টপিকের ওপরে পরীক্ষা দাও