ত্রিকোণমিতিক সূত্রাবলি ও ত্রিভুজের সূত্রাবলী
cos(α+β)sin(γ+θ)=cos(α−β) \cos (\alpha+\beta) \sin (\gamma+\theta)=\cos (\alpha-\beta) cos(α+β)sin(γ+θ)=cos(α−β) sin(γ−θ) \sin (\gamma-\theta) sin(γ−θ) হলে নিচের কোনটি সঠিক ?
tanθ=tanαtanβcotγ\tan \theta=\tan \alpha \tan \beta \cot \gamma \quad tanθ=tanαtanβcotγ
tanθ=tanαcotβtanγ\tan \theta=\tan \alpha \cot \beta \tan \gamma \quad tanθ=tanαcotβtanγ
tanθ=tanαtanβtanγ\tan \theta=\tan \alpha \tan \beta \tan \gamma \quad tanθ=tanαtanβtanγ
tanθ=cotαtanβtanγ\tan \theta=\cot \alpha \tan \beta \tan \gamma \quad tanθ=cotαtanβtanγ
Solve: cos(α+β)sin(γ+θ)= \cos (\alpha+\beta) \sin (\gamma+\theta)= cos(α+β)sin(γ+θ)=cos(α−β)sin(γ−θ) \cos (\alpha-\beta) \sin (\gamma-\theta) cos(α−β)sin(γ−θ)
⇒cos(α+β)cos(α−β)=sin(γ−θ)sin(γ+θ) \Rightarrow \frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{\sin (\gamma-\theta)}{\sin (\gamma+\theta)} ⇒cos(α−β)cos(α+β)=sin(γ+θ)sin(γ−θ)
⇒cos(α+β)+cos(α−β)cos(α+β)−cos(α−β))=sin(γ−θ)+sin(γ+θ)sin(γ−θ)−sin(γ+θ) \Rightarrow \frac{\cos (\alpha+\beta)+\cos (\alpha-\beta)}{\cos (\alpha+\beta)-\cos (\alpha-\beta))}=\frac{\sin (\gamma-\theta)+\sin (\gamma+\theta)}{\sin (\gamma-\theta)-\sin (\gamma+\theta)} ⇒cos(α+β)−cos(α−β))cos(α+β)+cos(α−β)=sin(γ−θ)−sin(γ+θ)sin(γ−θ)+sin(γ+θ)
⇒2cosαcosβ−2sinαsinβ=2sinγcosθ−2sinθcosγ \Rightarrow \frac{2 \cos \alpha \cos \beta}{-2 \sin \alpha \sin \beta}=\frac{2 \sin \gamma \cos \theta}{-2 \sin \theta \cos \gamma} ⇒−2sinαsinβ2cosαcosβ=−2sinθcosγ2sinγcosθ
⇒1tanαtanβ=tanγtanθ \Rightarrow \frac{1}{\tan \alpha \tan \beta}=\frac{\tan \gamma}{\tan \theta} ⇒tanαtanβ1=tanθtanγ
∴tanθ=tanαtanβtanγ \therefore \tan \theta=\tan \alpha \tan \beta \tan \gamma \quad ∴tanθ=tanαtanβtanγ (Showed)
If cos3π9+sin3π18=m4(cosπ9+sinπ18) \cos^3\frac{\pi}{9}+ \sin^3\frac{\pi}{18} = \dfrac{m}{4} \left( \cos\frac{\pi}{9}+ \sin\frac{\pi}{18}\right)cos39π+sin318π=4m(cos9π+sin18π).Find mmm
দৃশ্যকল্প-১: △ABC \triangle \mathrm{ABC} △ABC এর A=75∘,B−C=15∘ \mathrm{A}=75^{\circ}, \mathrm{B}-\mathrm{C}=15^{\circ} A=75∘,B−C=15∘
উদ্দীপক-১: XYZ ত্রিভুজে X+Y+Z=π X+Y+Z=\pi X+Y+Z=π
উদ্দীপক-২: sinα+sinβ=P \sin \alpha+\sin \beta=P sinα+sinβ=P এবং cosα+cosβ=Q \cos \alpha+\cos \beta=Q cosα+cosβ=Q