বিপরীত ত্রিকোণমিতিক ফাংশনের যোগ বিয়োগ
cosA=x \cos A=x cosA=x এবং cosB˙=y \cos \dot{B}=y cosB˙=y
2(sin−12x+sin−12y)=π 2\left(\sin ^{-1} 2 x+\sin ^{-1} 2 y\right)=\pi 2(sin−12x+sin−12y)=π হলে, দেখাও যে, 4x2+4y2=1 4 x^{2}+4 y^{2}=1 4x2+4y2=1.
A+B=θ A+B=\theta A+B=θ হলে, দেখাও যে, x2+y2−2xycosθ=sin2θ x^{2}+y^{2}-2 x y \cos \theta=\sin ^{2} \theta x2+y2−2xycosθ=sin2θ
sincos−1tansec−1cosAcosB=12 \sin \cos ^{-1} \tan \sec ^{-1} \frac{\cos \mathrm{A}}{\cos \mathrm{B}}=\frac{1}{2} sincos−1tansec−1cosBcosA=21 হলে, দেখাও যে, 4x2−7y2=0 4 \mathrm{x}^{2}-7 \mathrm{y}^{2}=0 4x2−7y2=0.
costan−1sincot−1(x)=? \cos \tan ^{-1} \sin \cot ^{-1}(\mathrm{x})=? costan−1sincot−1(x)=?
দৃশ্যকল্প: f(x)=tan−1x,g(x)=cos−1x f(x)=\tan ^{-1} x, g(x)=\cos ^{-1} x f(x)=tan−1x,g(x)=cos−1x
f(x)=cosx f(x)=\cos x f(x)=cosx এবং g(x)=tan−1x g(x)=\tan ^{-1} x g(x)=tan−1x
f(x)=cosx f(x)=\cos x f(x)=cosx এবং g(x)=sin−1x g(x)=\sin ^{-1} x g(x)=sin−1x