মান নির্ণয়
cotθ=34 \cot \theta=\frac{3}{4} cotθ=43 এবং cosθ \cos \theta cosθ ঋণাত্বক হলে, cot(−θ)+cosecθcosθ+sin(−θ) \frac{\cot (-\theta)+\operatorname{cosec} \theta}{\cos \theta+\sin (-\theta)} cosθ+sin(−θ)cot(−θ)+cosecθ এর মান নির্ণয় কর।
−10-10−10
−8-8−8
−6-6−6
−4-4−4
Solve:
যেহেতু cotθ=34⇒tanθ=43 \cot \theta=\frac{3}{4} \Rightarrow \tan \theta=\frac{4}{3} cotθ=43⇒tanθ=34 এবং
cosθ negative; ∴secθ=−1+tan2θ=−1+169=−259=−53∴cosθ=−35 এবং sinθ=tanθcosθ=43×(−35)=−45∴cosecθ=−54 এখন cot(−θ)+cosecθcosθ+sin(−θ)=−cotθ+cosecθcosθ−sinθ=−34+(−54)−35−−45=−3−54×5−3+4=−404=−10 (Ans.) \begin{array}{l} \cos \theta \\ \text { negative; } \\ \therefore \quad \sec \theta=-\sqrt{1+\tan ^{2} \theta}=-\sqrt{1+\frac{16}{9}} \\ =-\sqrt{\frac{25}{9}}=-\frac{5}{3} \\ \therefore \cos \theta=-\frac{3}{5} \text { এবং } \\ \sin \theta=\tan \theta \cos \theta=\frac{4}{3} \times\left(-\frac{3}{5}\right)=-\frac{4}{5} \\ \therefore \operatorname{cosec} \theta=-\frac{5}{4} \\ \text { এখন } \frac{\cot (-\theta)+\operatorname{cosec} \theta}{\cos \theta+\sin (-\theta)}=\frac{-\cot \theta+\operatorname{cosec} \theta}{\cos \theta-\sin \theta} \\ =\frac{-\frac{3}{4}+\left(-\frac{5}{4}\right)}{-\frac{3}{5}-\frac{-4}{5}}=\frac{-3-5}{4} \times \frac{5}{-3+4} \\ =-\frac{40}{4}=-10 \text { (Ans.) } \\ \end{array} cosθ negative; ∴secθ=−1+tan2θ=−1+916=−925=−35∴cosθ=−53 এবং sinθ=tanθcosθ=34×(−53)=−54∴cosecθ=−45 এখন cosθ+sin(−θ)cot(−θ)+cosecθ=cosθ−sinθ−cotθ+cosecθ=−53−5−4−43+(−45)=4−3−5×−3+45=−440=−10 (Ans.)
প্রমাণ কর যে, sin75∘+sin15∘sin75∘−sin15∘=3 \frac{\sin 75^{\circ}+\sin 15^{\circ}}{\sin 75^{\circ}-\sin 15^{\circ}}=\sqrt{3} sin75∘−sin15∘sin75∘+sin15∘=3.
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
যদি π2<θ<πএবংsinθ=35হয়, \frac{\pi}{2} < \theta < \pi এ ব ং \sin{\theta} = \frac{3}{5} হ য় , 2π<θ<πএবংsinθ=53হয়, তবে cosθ এর মান কত?
If cosθ=513\displaystyle \cos \theta =\frac{5}{13}cosθ=135, where θ\theta θ being an acute angle, then the value of cosθ+5cotθcosec θ−cosθ\dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta }cosec θ−cosθcosθ+5cotθ will be