বিপরীত ফাংশন ও পরামিতিক ফাংশনের অন্তরজ
ddx\dfrac{d}{dx}dxd { cot−11+x−1−x1+x−1−x\cot^{-1} \dfrac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}}cot−11+x−1−x1+x−1−x } =
11−x2\dfrac{1}{\sqrt{1-x^2}}1−x21
−121−x2\dfrac{-1}{2\sqrt{1-x^2}}21−x2−1
11+x2\dfrac{1}{1+x^2}1+x21
None of these
Let y=cot−1(1+x−1−x1+x−1−x)⇒y=cot−1(1)⇒y=π4⇒dydx=0 \begin{array}{l}\text { Let } y=\cot ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right) \\ \Rightarrow y=\cot ^{-1}(1) \\ \Rightarrow y=\frac{\pi}{4} \\ \Rightarrow \frac{d y}{d x}=0\end{array} Let y=cot−1(1+x−1−x1+x−1−x)⇒y=cot−1(1)⇒y=4π⇒dxdy=0
x=a(θ-sinθ), y=a(1-cosθ) হলে -
নিচের কোনটি সঠিক?
y=sin−1[4x1+4x] y = \sin^{- 1}{\left [ \frac{4 \sqrt{x}}{1 + 4 x} \right ]} y=sin−1[1+4x4x] হলে, (dydx)((4,2) \left ( \frac{dy}{dx} \right )_{\left ( \left ( 4 , 2 \right ) \right.} (dxdy)((4,2) এর মান কত?
If x=3sint, y=3cost,x=3\sin {t} ,\ y=3\cos {t} ,x=3sint, y=3cost, find dydx\dfrac {dy}{dx}dxdy at t=π3t=\dfrac { \pi }{ 3 } t=3π
x=a(1−sinθ),y=a(1+cosθ) x=a(1-\sin \theta), y=a(1+\cos \theta) x=a(1−sinθ),y=a(1+cosθ) এবং dydx=3 \frac{d y}{d x}=\sqrt{3} dxdy=3 হলে, θ= \theta= θ= কত?