লিমিট

limxπ(14tanx)cotx=\displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}=

IUT

Let, L=limxπ(14tanx)cotx\text{L}= \displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}

Put y=πxxπy0y=\pi-x\Rightarrow x\to \pi\Leftrightarrow y\to 0

L=limy0(14tan(πy))cot(πy)\therefore \text{L}= \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1- 4 \tan \mathrm{(\pi-y)} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{(\pi-y)}}

=limy0(1+4tany)coty[tan(πy)=tany]\quad \quad = \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1+4 \tan \mathrm{y} )^{-\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{y}}[\because \tan (\pi-y)=-\tan y]

Clearly form of the limit is 11^{\infty}

L=limy0(1+4tany)14tany×(4)=e4\therefore \text{L}= \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1+4 \tan \mathrm{y} )^{\dfrac{1}{4\tan y}\times(-4)}=e^{-4}

লিমিট টপিকের ওপরে পরীক্ষা দাও