লিমিট
limx→π2cotx−cosx(π2−x)3\displaystyle \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\cot x - \cos x}}{{{{\left( {\frac{\pi }{2} - x} \right)}^3}}}x→2πlim(2π−x)3cotx−cosx
−12\dfrac{-1}{2}2−1
16\dfrac{1}{6}61
222
111
Exlimn→π2cotn−cosn(π2−n)3 [० আকার ]=limx→π2−cosec2x+sinm3(π2−n)2(−1) [L’Ho, pital] =limn→π2−2cosecn(cotxcosecn)+cosn6(π2−n) \begin{array}{l}\left.\lim _{n \rightarrow \frac{\pi}{2}} \frac{\cot n-\cos n}{\left(\frac{\pi}{2}-n\right)^{3}} \text { [० আকার }\right] \\ =\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\operatorname{cosec}^{2} x+\sin m}{3\left(\frac{\pi}{2}-n\right)^{2}(-1)} \text { [L'Ho, pital] } \\ =\lim _{n \rightarrow \frac{\pi}{2}} \frac{-2 \operatorname{cosec} n(\cot x \operatorname{cosec} n)+\cos n}{6\left(\frac{\pi}{2}-n\right)} \\\end{array} limn→2π(2π−n)3cotn−cosn [० আকার ]=limx→2π3(2π−n)2(−1)−cosec2x+sinm [L’Ho, pital] =limn→2π6(2π−n)−2cosecn(cotxcosecn)+cosn
=limm→π22cosec2xcotx+cosn6(π2−m)=limn→π221cos2n×cosnsinn+cosn6(π2−m)=limx→π24cosec2x+cosx6(π2−x) \begin{array}{l}=\lim _{m \rightarrow \frac{\pi}{2}} \frac{2 \operatorname{cosec}^{2} x \cot x+\cos n}{6\left(\frac{\pi}{2}-m\right)} \\ =\lim _{n \rightarrow \frac{\pi}{2}} \frac{2 \frac{1}{\cos ^{2} n} \times \frac{\cos n}{\sin n}+\cos n}{6\left(\frac{\pi}{2}-m\right)} \\ =\lim _{x \rightarrow \frac{\pi}{2}} \frac{4 \operatorname{cosec} 2 x+\cos x}{6\left(\frac{\pi}{2}-x\right)} \\\end{array} =limm→2π6(2π−m)2cosec2xcotx+cosn=limn→2π6(2π−m)2cos2n1×sinncosn+cosn=limx→2π6(2π−x)4cosec2x+cosx
=limx→π24(−cot2xcosec2x)2−sinx−6=8(−cotπcosecπ)−sinπ/2−6=−1−6=16 Ans \begin{array}{l}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{4(-\cot 2 x \operatorname{cosec} 2 x) 2-\sin x}{-6} \\ =\frac{8(-\cot \pi \operatorname{cosec} \pi)-\sin \pi / 2}{-6} \\ =\frac{-1}{-6}=\frac{1}{6} \text { Ans }\end{array} =limx→2π−64(−cot2xcosec2x)2−sinx=−68(−cotπcosecπ)−sinπ/2=−6−1=61 Ans
limx→2x2−5x+6x2+2x−8 \lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x^{2}+2 x-8} limx→2x2+2x−8x2−5x+6 এর মান নির্ণয় কর।
limx→0+(cosecx)1/logx\displaystyle \lim_{x\rightarrow 0^{+}}{(\cosec x)^{1/\log x}}x→0+lim(cosecx)1/logx=?
ddx(9x)= \frac{d}{d x}\left(9^{x}\right)= dxd(9x)= কত?
The value of limx→−1π−cos−1xx+1\lim_{x \rightarrow -1} \dfrac{\sqrt{\pi}-\sqrt{\cos^{-1}x}}{\sqrt{x+1}}limx→−1x+1π−cos−1x is given by