রেখা বিভাজন ও অনুপাত

Find the length of the sides of the triangle whose vertices are (1,1),(0,4)(1,-1),(0,4) and (5,3)(-5,3).

হানি নাটস

solution,

Given,

A=(1,1)B=(0,4)C=(5,3) \begin{array}{l} A=(1,-1) \\ B=(0,4) \\ C=(-5,3) \end{array}

Distance formula =(x2x1)2+(y2y1)2 =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

AB=(0,1)2+(4(1)21+2526BC=(50)2+(34)225+126AC=(51)2+(3(1)236+1652 \begin{array}{l} A B=\sqrt{(0,-1)^{2}+\left(4-(-1)^{2}\right.} \Rightarrow \sqrt{1+25} \Rightarrow \sqrt{26} \\ B C=\sqrt{(-5-0)^{2}+(3-4)^{2}} \Rightarrow \sqrt{25+1} \Rightarrow \sqrt{26} \\ A C=\sqrt{(-5-1)^{2}+\left(3-(-1)^{2}\right.} \Rightarrow \sqrt{36+16} \Rightarrow \sqrt{52} \end{array}

so, AB=26 A B=\sqrt{26}

BC=26AC=52 \begin{array}{l} B C=\sqrt{26} \\ A C=\sqrt{52} \end{array}

রেখা বিভাজন ও অনুপাত টপিকের ওপরে পরীক্ষা দাও