ফাংশনের মান নির্ণয়
f(x)={2x−1,X>3,x2−4,−2≤x≤3.2x+1,X<−1} f{\left ( x \right )} = \left \lbrace 2 x - 1 , X > 3 , x^{2} - 4 , - 2 ≤ x ≤ 3.2 x + 1 , X < - 1 \right \rbrace f(x)={2x−1,X>3,x2−4,−2≤x≤3.2x+1,X<−1}
f(-3) এর মান কত?
-7
-5
5
7
n:f(−3)=2×(−3)+1=−5∴ ^{n}: f(-3)=2 \times(-3)+1=-5 \therefore n:f(−3)=2×(−3)+1=−5∴
Let f(x)=2−∣x−3∣,1≤x≤5f(x)=2-|x-3|, 1 \le x \le 5f(x)=2−∣x−3∣,1≤x≤5 and for rest of the values f(x)f(x)f(x) can be obtained by using the relation f(5x)=α f(x)∀ x∈Rf(5x)=\alpha\, f(x)\forall\, x \in Rf(5x)=αf(x)∀x∈R.The value of f(2007)f(2007)f(2007) taking α=5\alpha = 5α=5, is:
If f(x)=logx[ln(x)]f(x) = \log_x [\ln(x)]f(x)=logx[ln(x)], then f′(x)f'(x)f′(x) at x=ex = ex=e is:
Let for a≠a1≠0a\neq { a }_{ 1 }\neq 0a=a1=0f(x)=ax2+bx+c,g(x)=a1x2+b1x+c1f(x)={ ax }^{ 2 }+bx+c,g(x)={ a }_{ 1 }{ x }^{ 2 }+{ b }_{ 1 }x+{ c }_{ 1 }f(x)=ax2+bx+c,g(x)=a1x2+b1x+c1 and p(x)=0p(x)=0p(x)=0 only for x = -1 and p(-2) = 2, the the value of p(2) is :
f:R→R f: \mathrm{R} \rightarrow \mathrm{R} f:R→R (ে f(x)={x2+3x, यখन x≥2x+2, यখन x<2 f(\mathrm{x})=\left\{\begin{array}{l}\mathrm{x}^{2}+3 \mathrm{x}, \text { यখन } \mathrm{x} \geq 2 \\ x+2, \text { यখन } \mathrm{x}<2\end{array}\right. f(x)={x2+3x, यখन x≥2x+2, यখन x<2 হলে,
(i) f(2) এর মান=4; (ii) f(-2) এর মান =0; (iii) f(3) এর মান=18
নিচের কোনটি সঠিক ?