অন্বয় এবং ডোমেন ও রেঞ্জ
f(x)=9−x2f\left(x\right)=\sqrt{9-x^2}f(x)=9−x2 বাস্তব ফাংশনের ডোমেন ও রেঞ্জ যথাক্রমে কত?
[−3,3], [0, 3]\left[-3,3\right],\ [0,\ 3] [−3,3], [0, 3]
[3,−3],[0,−3] \left[3,-3\right],[0,-3] [3,−3],[0,−3]
[−3, 0],[3,0] \left[-3,\ 0\right],[3,0] [−3, 0],[3,0]
[0, 3], [3, −3]\left[0,\ 3\right],\ [3,\ -3] [0, 3], [3, −3]
f(x)=(9−x2)=y⇒y2=−x2+9⇒x=9−y2 \begin{array}{l} f(x)=\sqrt{\left(9-x^{2}\right)}=y \\ \Rightarrow y^{2}=-x^{2}+9 \\ \Rightarrow x=\sqrt{9-y^{2}} \end{array} f(x)=(9−x2)=y⇒y2=−x2+9⇒x=9−y2
Domain of f(x) f(x) f(x),
9−x2⩾0x2⩾9x2⩽±3 \begin{array}{l} 9-x^{2} \geqslant 0 \\ x^{2} \geqslant 9 \\ x^{2} \leqslant \pm 3 \end{array} 9−x2⩾0x2⩾9x2⩽±3
∴ \therefore ∴ Domo f f f : [−3,3] [-3,3] [−3,3]
for -3
x=0 x=0 x=0
∴ \therefore \quad ∴ Range f:[0,3] f:[0,3] f:[0,3]
f(x)=sinx \mathrm{f}(\mathrm{x})=\sin \mathrm{x} f(x)=sinx এর ডোমেন-
Total number of equivalence relations defined in the set S={a,b,c}S=\left\{a, b, c\right\}S={a,b,c} is?
নিম্নের কোনটি সঠিক নয়?