মাত্রা ও একক বিষয়ক

Force F is given in terms of time t and distance x by F=AsinCt+BcosDxF = A \sin Ct + B \cos Dx. Then the dimensions of AB\dfrac {A}{B} and CD\dfrac{C}{D} are:

হানি নাটস

F=AsinCt+BcosDxF = A \sin \, Ct + B \cos \, Dx

[Ct]=M0L0T0\therefore [Ct] = M^{0} L^{0} T^{0}

[CT1]=M0L0T0\Rightarrow[CT^1] = M^{0} L^{0} T^{0}

[C]=T1\Rightarrow [C] = T^{-1} ....(1)....(1)

Similarly

[Dx]=M0L0T0[Dx] = M^{0} L^{0} T^{0}

\Rightarrow [DL1]=M0L0T0[DL^{1}] = M^{0} L^{0} T^{0}

\Rightarrow [D]=L1[D] = L^{-1} ....(2)....(2)

[A]=[B]=MLT2[A] = [B] = MLT^{-2} ....(3)....(3)

From equation (3)(3)

AB=M0L0T0\dfrac{A}{B} = M^{0} L^{0} T^{0}

From equation (1)(1) and (2)(2)

CD=M0LT1\dfrac{C}{D} = M^{0} L T^{-1}

Hence Option CC is correct.

মাত্রা ও একক বিষয়ক টপিকের ওপরে পরীক্ষা দাও