ধারা

21!+2+42!+2+4+63!+\frac{2}{1!}+\frac{2+4}{2!}+\frac{2+4+6}{3!}+\ldots\infty ধারাটির যোগফল কত?

21!+2+42!+2+4+63!+ Un=2+4+6++2nn!=n(n+1)n!=n+1(n1)!=(n1)+2(n1)!=n1(n1)!+2(n1)!\frac{2}{1!}+\frac{2+4}{2!}+\frac{2+4+6}{3!}+\ldots\infty\ \\ U_n=\frac{2+4+6+\ldots+2n}{n!}=\frac{n\left(n+1\right)}{n!}=\frac{n+1}{\left(n-1\right)!}=\frac{\left(n-1\right)+2}{\left(n-1\right)!}=\frac{n-1}{\left(n-1\right)!}+\frac{2}{\left(n-1\right)!}

Sn=n=1n=Un=n=1n=n1(n1)!+2n=1n=1(n1)!=e+2e=3e \therefore S_n=\overset{n=\infty}{\underset{n=1} \sum}U_n =\overset{n=\infty}{\underset{n=1} \sum} \frac{n-1}{\left(n-1\right)!}+2 \overset{n=\infty}{\underset{n=1} \sum}\frac{1}{\left(n-1\right)!}=e+2e=3e\

ধারা টপিকের ওপরে পরীক্ষা দাও