গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule
ddx(logax+log10xa+elnx+lnx+ex)\frac{d}{d x}\left(\log _{a} x+\log _{10} x^{a}+e^{\ln x}+\ln x+e^{x}\right)dxd(logax+log10xa+elnx+lnx+ex) এর অন্তরক সহগ নিচের কোনটি ?
1lna+a1xln10+1+1x+ex\frac{1}{ \ln a}+a \frac{1}{x \ln 10}+1+\frac{1}{x}+e^{x}lna1+axln101+1+x1+ex
1xlna+a1xln10+1+1x+ex\frac{1}{x \ln a}+a \frac{1}{x \ln 10}+1+\frac{1}{x}+e^{x}xlna1+axln101+1+x1+ex
1xln+a1xln10+1+1x+ex\frac{1}{x \ln }+a \frac{1}{x \ln 10}+1+\frac{1}{x}+e^{x}xln1+axln101+1+x1+ex
1xlna+a1xln10+1+1x+e\frac{1}{x \ln a}+a \frac{1}{x \ln 10}+1+\frac{1}{x}+exlna1+axln101+1+x1+e
Solve:
ddx(logax+log10xa+elnx+lnx+ex)=ddx(logax+alog10x+x+lnx+ex)=1xlna+a1xln10+1+1x+ex \begin{array}{l} \frac{d}{d x}\left(\log _{a} x+\log _{10} x^{a}+e^{\ln x}+\ln x+e^{x}\right) \\ = \frac{d}{d x}\left(\log _{a} x+a \log _{10} x+x+\ln x+e^{x}\right) \\ = \frac{1}{x \ln a}+a \frac{1}{x \ln 10}+1+\frac{1}{x}+e^{x} \end{array} dxd(logax+log10xa+elnx+lnx+ex)=dxd(logax+alog10x+x+lnx+ex)=xlna1+axln101+1+x1+ex
If the angle between the curves y=2x y = 2^x y=2x and y=3x y=3^x y=3x is α, \alpha, α, then the value of tanα \tan \alpha tanα is equal to :
xxx এর সাপেক্ষে অন্তরক সহগ নিচের কোনটি? ln{ex(x−1x+1)3/2} \ln \left\{e^{x}\left(\frac{x-1}{x+1}\right)^{3 / 2}\right\} ln{ex(x+1x−1)3/2}
Differentiate the following w.rd/dxd/dxd/dx
sinx logx\sin x\ log xsinx logx.
ddx(e2x−3)= \frac{d}{d x}\left(e^{\sqrt{2 x}-3}\right)= dxd(e2x−3)= কত?