মহাকর্ষ ও অভিকর্ষ

From a solid sphere of mass MM and radius RR a spherical portion of radius R2\dfrac {R}{2} is removed, as shown in the figure. Taking gravitational potential V=0V = 0 at r=r = \infty, the potential at the centre of the cavity thus formed is : (G=(G = gravitational constant).

হানি নাটস

By superposition principle, v1=GM2R3[3R2(R2)2]v_1=\dfrac{-GM}{2R^3}[3R^2-(\dfrac{R}{2})^2]

=11GM8R3=-\dfrac{11GM}{8R^3}
Also, v2=32G(M/8)(R/2)=3GM8Rv_2=-\dfrac{3}{2} \dfrac{G (M/8)}{(R/2)}=\dfrac{-3GM}{8R}
The required potential is, v=v1v2v=v_1-v_2
=11GM8R(3GM8R)=-\dfrac{11GM}{8R}-(-\dfrac{3GM}{8R})
V=GMRV=-\dfrac{GM}{R}

মহাকর্ষ ও অভিকর্ষ টপিকের ওপরে পরীক্ষা দাও