লঘুমান গুরুমান বিষয়ক

f(x) = 3x4 - 2x3 - 6x2 + 6x + 1 এর চরমমান নির্ণয় কর।

BUTEX 21-22

f(x)=3x42x36x2+6x+1f(x)=12x36x212x+6f(x)=36x212x12 \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{4}-2 \mathrm{x}^{3}-6 \mathrm{x}^{2}+6 \mathrm{x}+1 \therefore \mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}^{3}-6 \mathrm{x}^{2}-12 \mathrm{x}+6 \therefore \mathrm{f}^{\prime \prime}(\mathrm{x})=36 \mathrm{x}^{2}-12 \mathrm{x}-12

চরম মানের জন্য, f(x)=012x36x212x+6=0x=1,1,12 \mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow 12 \mathrm{x}^{3}-6 \mathrm{x}^{2}-12 \mathrm{x}+6=0 \therefore \mathrm{x}=-1,1, \frac{1}{2} [Using Calculator]

f(1)=3(1)42(1)36(1)2+6(1)+1=6 \therefore \mathrm{f}(-1)=3(-1)^{4}-2(-1)^{3}-6(-1)^{2}+6(-1)+1=-6

[f(1)=36(1)212(1)12=36>0 \left[\mathrm{f}^{\prime \prime}(-1)=36(-1)^{2}-12(-1)-12=36>0\right. ; লঘুমান]

f(1)=3(1)42(1)36(1)2+6(1)+1=2[f(1)=36.1212.112=12>0 \mathrm{f}(1)=3(1)^{4}-2(1)^{3}-6(1)^{2}+6(1)+1=2\left[f^{\prime \prime}(1)=36.1^{2}-12.1-12=12>0\right. ; লঘুমান]

f(12)=3(12)42(12)36(12)2+6(12)+1=3916[f(12)=36(12)2121212=9<0 \mathrm{f}\left(\frac{1}{2}\right)=3\left(\frac{1}{2}\right)^{4}-2\left(\frac{1}{2}\right)^{3}-6\left(\frac{1}{2}\right)^{2}+6\left(\frac{1}{2}\right)+1=\frac{39}{16}\left[\mathrm{f}^{\prime \prime}\left(\frac{1}{2}\right)=36\left(\frac{1}{2}\right)^{2}-12 \cdot \frac{1}{2}-12=-9<0\right. ; গুরুমান]

\therefore চরম মান সমূহঃ 6,2,3916 -6,2, \frac{39}{16} [যেখানে, 3916 \frac{39}{16} হলো গুরুমান এবং -6 ও 2 হলো লঘুমান]

লঘুমান গুরুমান বিষয়ক টপিকের ওপরে পরীক্ষা দাও