লঘুমান গুরুমান বিষয়ক
I. lf f′(a)>0f'(\mathrm{a})>0f′(a)>0 then f\mathrm{f}f is increasing at x=a\mathrm{x}=\mathrm{a}x=a
II: If f is increasing at x=a\mathrm{x}=\mathrm{a}x=a then f′(a)f'(\mathrm{a})f′(a) need not to be positive
only I
only II
both I and II
neither I nor II
f(x)f(x)f(x) is increasing when f′(x)>0f'(x)>0f′(x)>0
দৃশ্যকল্প-I: y(x+1)(x+2)−x+4 y(x+1)(x+2)-x+4 y(x+1)(x+2)−x+4
দৃশ্যকল্প-II: g(x)=3x3−6x2−5x+1 \mathrm{g}(\mathrm{x})=3 \mathrm{x}^{3}-6 \mathrm{x}^{2}-5 \mathrm{x}+1 g(x)=3x3−6x2−5x+1
Let f(x)={x3/5x≤1−(x−2)3x>1f\left( x \right) =\left\{ \begin{matrix} { x }^{ { 3 }/{ 5 } }\quad \quad \quad x\le 1 \\ -{ \left( x-2 \right) }^{ 3 }\quad x>1 \end{matrix} \right. f(x)={x3/5x≤1−(x−2)3x>1
then the number of critical points on the graph of the function is
If for all x,yx, yx,y the function f is defined by; f(x)+f(y)+f(x)⋅f(y)=1f(x)+f(y)+f(x)\cdot f(y)=1f(x)+f(y)+f(x)⋅f(y)=1 and f(x)>0f(x) > 0f(x)>0.When f(x)f(x)f(x) is differentiable f′(x)=f'(x)= f′(x)=,
xlnx \frac{x}{\ln{x}} lnxx ফাংশনের সর্বনিম্ন মান নিচের কোনটি?