nCr ও সম্পূরক সমাবেশ বিষয়ক
If 19C3r=19Cr+3^{19}C_{3r} = ^{19}C_{r+3} 19C3r=19Cr+3, then r is equal to:
555
444
333
222
19C3r=19Cr+3^{ 19 }{ C }_{ 3r }=^{ 19 }{ C }_{ r+3 }19C3r=19Cr+3
The value of ∑r=010(10r)(1514−r)\sum^{10}_{r=0}\begin{pmatrix}10\\r\end{pmatrix}\begin{pmatrix}15\\14-r\end{pmatrix}∑r=010(10r)(1514−r) is equal to
দৃশ্যকল্প-১ : 2nP3=2×nP4 { }^{2 n} \mathrm{P}_{3}=2 \times{ }^{n} \mathrm{P}_{4} 2nP3=2×nP4
দৃশ্যকল্প-২: A=nCT+nCr−1 A={ }^{n} \mathrm{C}_{\mathrm{T}}+{ }^{n} \mathrm{C}_{\mathrm{r}-1} A=nCT+nCr−1
দৃশ্যকল্প-৩ : একটি বৃত্তের কেন্দ্র (−g,−f) (-\mathrm{g},-f) (−g,−f) এবং
ব্যাসার্ধ=g2+f2−c =\sqrt{\mathrm{g}^{2}+f^{2}-\mathrm{c}} =g2+f2−c
The value of(300)(3010)−(301)(3011)+(302)(3012)−.....+(3020)(3030)=The\ value\ of \begin{pmatrix} 30 \\ 0 \end{pmatrix}\begin{pmatrix} 30 \\ 10 \end{pmatrix}-\begin{pmatrix} 30 \\ 1 \end{pmatrix}\begin{pmatrix} 30 \\ 11 \end{pmatrix}+\begin{pmatrix} 30 \\ 2 \end{pmatrix}\begin{pmatrix} 30 \\ 12 \end{pmatrix}-.....+\begin{pmatrix} 30 \\ 20 \end{pmatrix}\begin{pmatrix} 30 \\ 30 \end{pmatrix}=The value of(300)(3010)−(301)(3011)+(302)(3012)−.....+(3020)(3030)=
If 15C3r=15Cr+3^{15}C_{3r} = ^{15}C_{r+3}15C3r=15Cr+3, then find the value of rrr: