মাত্রা ও একক বিষয়ক
If C is the capacity and V is the potential across the condenser, what will be the dimensional representation of 12CV2\dfrac1 2 C V ^ { 2 }21CV2?
ML2T−2A2M L ^ { 2 } T ^ { -2 } A ^ { 2 }ML2T−2A2
ML−2T−2\mathrm { ML } ^ { - 2 } \mathrm { T } ^ { - 2 }ML−2T−2
ML2T−3A−2M L ^ { 2 } T ^ { - 3 } A ^ { - 2 }ML2T−3A−2
ML2T−2\mathrm { ML } ^ { 2 } \mathrm { T } ^ { - 2 }ML2T−2
Let XXX be the quantity represented.
X=12CV2X = \dfrac 12 CV^2X=21CV2
X=12QV×V2X = \dfrac 12 \dfrac QV \times V^2X=21VQ×V2
X=12Q.VX = \dfrac12 Q.VX=21Q.V
[X]=[Q][V]=[IT][ML2T−3I−1]=[ML2T−2][X] = [Q][V]=[IT][ML^2T^{-3}I^{-1}]=[ML^2T^{-2}][X]=[Q][V]=[IT][ML2T−3I−1]=[ML2T−2]
নিচের কোনটি দুরত্বের একক নয়?
(P+aV2)(V−b)=RT \left ( P + \frac{a}{V^{2}} \right ) \left ( V - b \right ) = R T (P+V2a)(V−b)=RT সমীকরণটিতে a এর মাত্রা কত?
The dimensional formula for impulse is same as the dimensional
formula for
A force is given by F=at+bt2F = at + b{t^2}F=at+bt2, where ttt is time, the dimensions of aaa and bbb are respectively :