Higher Math
If cos−1x−cos−1y2=α,{{\cos }^{-1}}x-{{\cos }^{-1}}\frac{y}{2}=\alpha ,cos−1x−cos−12y=α, then 4x2−4xycosα+y24{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}4x2−4xycosα+y2 is equal to
2sin2α2\sin 2\alpha 2sin2α
444
4sin2α4{{\sin }^{2}}\alpha 4sin2α
−4sin2α-4{{\sin }^{2}}\alpha −4sin2α
Let,
cos−1x−cos−1y2=α⇒cos−1{xy2+1−x21−y24}=α⇒xy2+(1−x2)(1−y24)=cosα⇒(1−x2)(1−y24)=cosα−xy2⇒(1−x2)(−1−y24)=cos2α+x2y24−xycosα⇒(1−x2)(4−y24)=4cos2α+x2y2−4xycosα4⇒(1−x2)(4−y2)=4cos2α+x2y2−4xycosα⇒4−4x2−y2+x2y2=4cos2α+x2y2−4xycosα⇒4−4x2−y2=4cos2α−4xycosα⇒4=4(1−sin2α)−4xycos2α+4x2+y2⇒4=4−4sin2α−4xycosα+4x2+y2⇒4x2−4xycos2α+y2=4sin2α \begin{aligned} & \cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha \\ \Rightarrow & \cos ^{-1}\left\{\frac{x y}{2}+\sqrt{1-x^{2}} \sqrt{1-\frac{y^{2}}{4}}\right\}=\alpha \\ \Rightarrow & \frac{x y}{2}+\sqrt{\left(1-x^{2}\right)\left(1-\frac{y^{2}}{4}\right)}=\cos \alpha \\ \Rightarrow & \sqrt{\left(1-x^{2}\right)\left(1-\frac{y^{2}}{4}\right)}=\cos \alpha-\frac{x y}{2} \\ \Rightarrow & \left(1-x^{2}\right)\left(-1-\frac{y^{2}}{4}\right)=\cos ^{2} \alpha+\frac{x^{2} y^{2}}{4}-x y \cos \alpha \\ \Rightarrow & \left(1-x^{2}\right)\left(\frac{4-y^{2}}{4}\right)=\frac{4 \cos ^{2} \alpha+x^{2} y^{2}-4 x y \cos \alpha}{4} \\ \Rightarrow & \left(1-x^{2}\right)\left(4-y^{2}\right)=4 \cos ^{2} \alpha+x^{2} y^{2}-4 x y \cos \alpha \\ \Rightarrow & 4-4 x^{2}-y^{2}+x^{2} y^{2}=4 \cos ^{2} \alpha+x^{2} y^{2}-4 x y \cos \alpha \\ \Rightarrow & 4-4 x^{2}-y^{2}=4 \cos ^{2} \alpha-4 x y \cos \alpha \\ \Rightarrow & 4=4\left(1-\sin ^{2} \alpha\right)-4 x y \cos ^{2} \alpha+4 x^{2}+y^{2} \\ \Rightarrow & 4=4-4 \sin ^{2} \alpha-4 x y \cos \alpha+4 x^{2}+y^{2} \\ \Rightarrow & 4 x^{2}-4 x y \cos ^{2} \alpha+y^{2}=4 \sin ^{2} \alpha \end{aligned} ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒cos−1x−cos−12y=αcos−1{2xy+1−x21−4y2}=α2xy+(1−x2)(1−4y2)=cosα(1−x2)(1−4y2)=cosα−2xy(1−x2)(−1−4y2)=cos2α+4x2y2−xycosα(1−x2)(44−y2)=44cos2α+x2y2−4xycosα(1−x2)(4−y2)=4cos2α+x2y2−4xycosα4−4x2−y2+x2y2=4cos2α+x2y2−4xycosα4−4x2−y2=4cos2α−4xycosα4=4(1−sin2α)−4xycos2α+4x2+y24=4−4sin2α−4xycosα+4x2+y24x2−4xycos2α+y2=4sin2α
(3,0) (3,0) (3,0) ও (7,0) (7,0) (7,0) বিন্দুগামী এবং y y y -অক্ষকে স্পর্শ করে এরূপ বৃত্তের সমীকরণ নির্ণয় কর।
ত্রিভুজের বাহুত্রয় 3, 5, 6 হলে পরিব্যাস কত?
cos15° এর মান-
সমাধান কর: