নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স

If DP=P158P2359P32510,{ D }_{ P }=\left| \begin{matrix} P & 15 & 8 \\ { P }^{ 2 } & 35 & 9 \\ { P }^{ 3 } & 25 & 10 \end{matrix} \right| , then D1+D2+D3+D4+D5{ D }_{ 1 }+{ D }_{ 2 }+{ D }_{ 3 }+{ D }_{ 4 }+{ D }_{ 5 } is equal to -

হানি নাটস

Given

Dp=p158p2359p32510D_p=\begin{vmatrix} p & 15 & 8\\ p^2 & 35 & 9\\ p^3 & 25 & 10\end{vmatrix}

=p(350225)15(10p29p3)+8(25p235p3)=p(350-225)-15(10p^2-9p^3)+8(25p^2-35p^3)

D1=1(350225)15(10(1)29(1)3)+8(25(1)235(1)3)D_1=1(350-225)-15(10(1)^2-9(1)^3)+8(25(1)^2-35(1)^3)

=12515.(1)+8(10)=125-15.(1)+8(-10)

=1258015=125-80-15

=12595=125-95

=30=30

D2=2(350225)15(10(2)29(2)3)+8(25(2)235(2)3)D_2=2(350-225)-15(10(2)^2-9(2)^3)+8(25(2)^2-35(2)^3)

=2.(125)15(4072)+8(100280)=2.(125)-15(40-72)+8(100-280)

=250+15(32)1440=250+15(32)-1440

=7301440=730-1440

=710=-710

D3=3(350225)15(10(3)29(3)3)+8(25(3)235(3)3)D_3=3(350-225)-15(10(3)^2-9(3)^3)+8(25(3)^2-35(3)^3)

=3.(125)15(90243)+8(225945)=3.(125)-15(90-243)+8(225-945)

=375+15(153)8(720)=375+15(153)-8(720)

=375+2,2955760=375+2,295-5760

=3090=-3090.

D4=4(350225)15(10(4)29(4)3)+8(25(4)235(4)3)D_4=4(350-225)-15(10(4)^2-9(4)^3)+8(25(4)^2-35(4)^3)

=4.(125)15(160576)+8(4002240)=4.(125)-15(160-576)+8(400-2240)

=500+62408.(1840)=500+6240-8.(1840)

=574014720=5740-14720

=8980=-8980

D5=5(350225)15(10(5)29(5)3)+8(25(5)235(5)3)D_5=5(350-225)-15(10(5)^2-9(5)^3)+8(25(5)^2-35(5)^3)

=5(125)15(2501125)+8(6254375)=5(125)-15(250-1125)+8(625-4375)

=625+13125+(30,000)=625+13125+(-30,000)

=16250=-16250.

D1+D2+D3+D4+D5=307103090898016250\therefore D_1+D_2+D_3+D_4+D_5=30-710-3090-8980-16250

=29000=-29000.

নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স টপিকের ওপরে পরীক্ষা দাও