ফাংশনের মান নির্ণয়
If f(x+1x)=x2+1x2f\left(x+\dfrac{1}{x}\right)=x^2+\dfrac{1}{x^2}f(x+x1)=x2+x21 then f(x)=?f(x)=?f(x)=?
x2x^2x2
(x2−1)(x^2-1)(x2−1)
(x2−2)(x^2-2)(x2−2)
None of these
If f(x)=logx[ln(x)]f(x) = \log_x [\ln(x)]f(x)=logx[ln(x)], then f′(x)f'(x)f′(x) at x=ex = ex=e is:
For a function F, F(0) = 2, F(1) = 3, F(x + 2) = 2 F(x) - F(x + 1) for x ≥\geq≥ 0, then F(5) is equal to-
If f(x)=coshx+sinhxf(x)=\cosh x+\sinh x f(x)=coshx+sinhx then f(x1+x2+.......+xn)=f(x_{1}+x_{2}+.......+x_{n})=f(x1+x2+.......+xn)=
Let f(x)=∣x−x1∣+∣x−x2∣f(x)=\left | x-x_{1} \right |+\left | x-x_{2} \right |f(x)=∣x−x1∣+∣x−x2∣ where x1andx2x_{1} and x_{2}x1andx2 are distinct real numbers. Then the number of points at which f(x) is minimum is: