লিমিট

If f(x)=min(x25x,1)f(x)=min(|x|^{2}-5|x|,1) then f(x)f(x) is non differentiable at λ\lambda points, then λ+13\lambda+13 equals

হানি নাটস

First, find the critical points of x25x |x|^2 - 5|x| .

Let y=x25x y = |x|^2 - 5|x| . Then, y=x25x y = x^2 - 5x when x0 x \geq 0 , and y=x2+5x y = x^2 + 5x when x<0 x < 0 .

Finding the derivative of y y with respect to x x :

For x0 x \geq 0 :

y=ddx(x25x)=2x5 y' = \frac{d}{dx} (x^2 - 5x) = 2x - 5

For x<0 x < 0 :

y=ddx(x2+5x)=2x+5 y' = \frac{d}{dx} (x^2 + 5x) = 2x + 5

Setting these derivatives equal to zero to find critical points:

For x0 x \geq 0 :

2x5=0 2x - 5 = 0

2x=5 2x = 5

x=52 x = \frac{5}{2}

For x<0 x < 0 :

2x+5=0 2x + 5 = 0

2x=5 2x = -5

x=52 x = -\frac{5}{2}

So, the critical points are x=52 x = \frac{5}{2} and x=52 x = -\frac{5}{2} .

Now, evaluate f(x) f(x) at these critical points:

For x=52 x = \frac{5}{2} :

f(52)=min(522552,1) f\left(\frac{5}{2}\right) = \min\left(|\frac{5}{2}|^{2} - 5|\frac{5}{2}|, 1\right)

=min(254252,1) = \min\left(\frac{25}{4} - \frac{25}{2}, 1\right)

=min(254,1) = \min\left(-\frac{25}{4}, 1\right)

=254 = -\frac{25}{4}

For x=52 x = -\frac{5}{2} :

f(52)=min(522552,1) f\left(-\frac{5}{2}\right) = \min\left(|-\frac{5}{2}|^{2} - 5|-\frac{5}{2}|, 1\right)

=min(254+252,1) = \min\left(\frac{25}{4} + \frac{25}{2}, 1\right)

=min(754,1) = \min\left(\frac{75}{4}, 1\right)

=1 = 1

So, f(x) f(x) is non-differentiable at x=52 x = \frac{5}{2} because f(x) f(x) has a sharp turn at that point, and it's also non-differentiable at x=52 x = -\frac{5}{2} because the function has a sharp corner there.

Therefore, λ=2 \lambda = 2 , and λ+13=2+13=15 \lambda + 13 = 2 + 13 = 15 .

লিমিট টপিকের ওপরে পরীক্ষা দাও