নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স
If maximum and minimum values of D=∣1−cosθcosθ1−cosθ1cosθ1∣ D=\left|\begin{array}{ccc}1 & -\cos \theta & \\ \cos \theta & 1 & -\cos \theta \\ 1 & \cos \theta & 1\end{array}\right| D=1cosθ1−cosθ1cosθ−cosθ1 are p p p and q q q respectively, then the value of 2p+3q 2 p+3 q 2p+3q is-
161616
666
141414
888
D=∣1−cosθ1cosθ1−cosθ1cosθ1∣D = \begin{vmatrix}1 & -\cos \theta & 1\\ \cos \theta & 1 & -\cos \theta\\ 1 & \cos \theta & 1\end{vmatrix}D=1cosθ1−cosθ1cosθ1−cosθ1
=1+cos2θ+2cos2θ−cos2θ+1= 1 + \cos^{2}\theta + 2\cos^{2}\theta -\cos^{2} \theta + 1=1+cos2θ+2cos2θ−cos2θ+1
=2(1+cos2θ)= 2 (1 + \cos^{2} \theta)=2(1+cos2θ)
∴p=4,q=2\therefore p = 4, q = 2∴p=4,q=2
∴2p+3q=14\therefore 2p + 3q = 14∴2p+3q=14.
Three digits numbers 7x,36y 7x,36y7x,36y and 12z12z12z where x,y,zx , y , zx,y,z are integers from 000 to 9,9 ,9, are divisible by a fixed constant k.k.k. Then the determinant ∣x3176z1y2∣\left| \begin{array} { l l l } { x } & { 3 } & { 1 } \\ { 7 } & { 6 } & { z } \\ { 1 } & { y } & { 2 } \end{array} \right|x7136y1z2 +48\ +48 +48 must be divisible by
K \mathrm{K} K এর কোন মানের জন্য [K+133K−1] \left[\begin{array}{cc}K+1 & 3 \\ 3 & K-1\end{array}\right] [K+133K−1] ম্যাট্রিক্সটি বিপরীতযোগ্য নয়?
lf the lines 3x+2y−5=0, 2x−5y+3=0, 5x+by+c=03\mathrm{x}+2\mathrm{y}-5=0,\ 2\mathrm{x}-5\mathrm{y}+3=0,\ 5\mathrm{x}+\mathrm{b}\mathrm{y}+\mathrm{c}=03x+2y−5=0, 2x−5y+3=0, 5x+by+c=0 are concurrent then b+c=\mathrm{b}+\mathrm{c}=b+c=
[m−262m−3] \left [ \begin{matrix} m - 2 & 6 \\ 2 & m - 3 \end{matrix} \right ] [m−226m−3]
ম্যাট্রিক্সটি ব্যতিক্রমী হবে যদি m এর মান-