দ্বিপদী বিস্তৃতি

If the second term of the expansion ;[a1/13+aa1]nis14a5/2\displaystyle \left [ a^{1/13}+\frac{a}{\sqrt{a^{-1}}} \right ]^{n}\: \: is\: \: 14a^{5/2}, then the value of& ;nC3nC2\displaystyle \frac{^{n}{C}_{3}}{^{n}{C}_{2}} is

হানি নাটস

Using the formula Tr+1=nCrxnrar{ T }_{ r+1= }{ _{ }^{ n }{ C } }_{ r }{ { x }^{ n-r }{ a }^{ r } }

in the above question,we have T2=nC1(a113)n1(aa)=14a52{ T }_{ 2 }={ _{ }^{ n }{ C } }_{ 1 }{ \left( { a }^{ \frac { 1 }{ 13 } } \right) }^{ n-1 }(a\sqrt { a } )=14{ a }^{ \frac { 5 }{ 2 } }

T2=nC1an113a1+12=14a52\Rightarrow { T }_{ 2 }={ _{ }^{ n }{ C } }_{ 1 }{ a }^{ \tfrac { n-1 }{ 13 } }{ a }^{ 1+\frac { 1 }{ 2 } }=14{ a }^{ \tfrac { 5 }{ 2 } }

nC1an113+32=14a52\Rightarrow { _{ }^{ n }{ C } }_{ 1 }{ a }^{ \frac { n-1 }{ 13 } +\frac { 3 }{ 2 } }=14{ a }^{ \frac { 5 }{ 2 } }

Comparing L.H.S and R.H.S,

a2n+3726=a52\Rightarrow { a }^{ \tfrac { 2n+37 }{ 26 } }={ a }^{ \tfrac { 5 }{ 2 } }

Since bases are same,we can equate the powers

Thus, 2n+3726=52\cfrac { 2n+37 }{ 26 } =\cfrac { 5 }{ 2 }

On solving , 2(2n+37)=5×262n+37=652(2n+37)=5\times 26\Rightarrow 2n+37=65

2n=6537=28\therefore 2n=65-37=28

Hence, n=282=14 n=\cfrac { 28 }{ 2 } =14

Using the formula, nCrnCr1=nr+1r\cfrac { { _{ }^{ n }{ C } }_{ r } }{ { _{ }^{ n }{ C } }_{ r-1 } } =\cfrac { n-r+1 }{ r } where r=3r=3 and n=14n=14

nC3nC2=143+13=123=4\cfrac { { _{ }^{ n }{ C } }_{ 3 } }{ { _{ }^{ n }{ C } }_{ 2 } } =\cfrac { 14-3+1 }{ 3 } =\cfrac { 12 }{ 3 } =4

দ্বিপদী বিস্তৃতি টপিকের ওপরে পরীক্ষা দাও