স্পর্শক ও অভিলম্ব বিষয়ক

If the slope of one of the lines represented a3x2+2hxy+b3y2=0{a^3}{x^2} + 2hxy + {b^3}{y^2} = 0 be the square of the other, then ab(a+b)ab(a+b) is equal to:

হানি নাটস

Solution:-

Given:

a3x22hxy+b3y2=0,ax2+2hxy+by2=0 a^{3} x^{2}-2 h x y+b^{3} y^{2}=0, \quad a x^{2}+2 h x y+b y^{2}=0

a=a3,b=b3 a=a^{3}, b=b^{3} \quad and 2h=2hm1m2=ab 2 h=-2 h \quad m_{1} \cdot m_{2}=\frac{a}{b}

m1=mm2=m2m3=a3b3m=abm+m2=+2hb3ab+a2b2=2hb3 \begin{array}{c} m_{1}=m \\ m_{2}=m^{2} \\ m^{3}=\frac{a^{3}}{b^{3}} \\ m=\frac{a}{b} \\ m+m^{2}=\frac{+2 h}{b^{3}} \\ \frac{a}{b}+\frac{a^{2}}{b^{2}}=\frac{2 h}{b^{3}} \end{array}

Mulfiplying whole equation by b3 b^{3} we get

ab2+a2b=2h a b^{2}+a^{2} b=2 h

Hence it can also be written as ab(a+b)=2h a b(a+b)=2 h

Therefore option (a) 2h 2 h is the correct choice.

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও