গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule

If y=xny=x^n, then the ratio of relative errors in yy and xx is

হানি নাটস

y=xny=x^{n}
dydx=nxn1\Rightarrow \displaystyle \dfrac{dy}{dx}=nx^{n-1}
Approximate error in y is dy=(dydx)Δx\displaystyle dy=\left (\dfrac{dy}{dx}\right) \Delta x
=nxn1Δx=nx^{n-1} \Delta x
Relative error in y is dyy=nxΔx\displaystyle \dfrac{dy}{y}=\dfrac{n}{x}\Delta x
Approximate error in x is dx=(dxdy)Δy\displaystyle dx=\left (\dfrac{dx}{dy}\right) \Delta y
=1nxn1Δy\displaystyle=\dfrac{1}{nx^{n-1}} \Delta y
Relative error in x is dxx=1nxnΔy\displaystyle \dfrac{dx}{x}=\dfrac{1}{nx^{n}}\Delta y
Required ratio =nxΔx1nxnΔy\displaystyle = \dfrac{\dfrac{n}{x}\Delta x}{\dfrac{1}{nx^{n}}\Delta y}
=n2xn1ΔxΔy\displaystyle =n^{2}x^{n-1} \dfrac{\Delta x}{\Delta y}
=n1\displaystyle =\dfrac{n}{1}
So, the ratio of relative errors in y and x is n:1 n:1.

গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule টপিকের ওপরে পরীক্ষা দাও