প্রতিস্থাপন পদ্ধতি (Method of Substitution)

dx(ex1)2=?\int \frac{d x}{\left(e^{x}-1\right)^{2}} = ?

কেতাব স্যার লিখিত

Solve: Let, I =dx(ex1)2=dx{eI(1ex)}2 \text { Let, I }=\int \frac{d x}{\left(e^{x}-1\right)^{2}}=\int \frac{d x}{\left\{e^{\mathbb{I}}\left(1-e^{-x}\right)\right\}^{2}}

=dxe2x(1ex)2=exexdx(1ex)2 এবং ex=z Then exdx=dz and I=zdz(1z)2=(1z)1(1z)2dz={11z1(1z)2}dz={11z1(1z)2}d(1z)={ln1z+11z}+c=ln1ex11ex+c \begin{array}{l} =\int \frac{d x}{e^{2 x}\left(1-e^{-x}\right)^{2}}=\int \frac{e^{-x} \cdot e^{-x} d x}{\left(1-e^{-x}\right)^{2}} \text { এবং } \\ e^{-x}=z \cdot \text { Then }-e^{-x} d x=d z \text { and } \\ \mathrm{I}=-\int \frac{z d z}{(1-z)^{2}}=\int \frac{(1-z)-1}{(1-z)^{2}} d z \\ =\int\left\{\frac{1}{1-z}-\frac{1}{(1-z)^{2}}\right\} d z \\ =-\int\left\{\frac{1}{1-z}-\frac{1}{(1-z)^{2}}\right\} d(1-z) \\ =-\left\{\ln |1-z|+\frac{1}{1-z}\right\}+c \\ =-\ln \left|1-e^{-x}\right|-\frac{1}{1-e^{-x}}+c \end{array}

প্রতিস্থাপন পদ্ধতি (Method of Substitution) টপিকের ওপরে পরীক্ষা দাও