প্রতিস্থাপন পদ্ধতি (Method of Substitution)
∫dxcos2x1+tanx+c \int \frac{dx}{\cos^{2}{x} \sqrt{1 + \tan{x}}} + c ∫cos2x1+tanxdx+c এর মান কোনটি?
∫dxcos2x1+tanx=∫sec−x1+tanxdx=21+tanx+c−f′(x)f(x)=2ρ(x) \begin{aligned} \int \frac{d x}{\cos ^{2} x \sqrt{1+\tan x}} \\ =\int \frac{\sec ^{-} x}{\sqrt{1+\tan x}} d x \\ =2 \sqrt{1+\tan x}+c \\ -\frac{f^{\prime}(x)}{\sqrt{f(x)}}=2 \sqrt{\rho(x)}\end{aligned} ∫cos2x1+tanxdx=∫1+tanxsec−xdx=21+tanx+c−f(x)f′(x)=2ρ(x)
∫ecos−1x1−x2dx \int \frac{e^{\cos^{- 1}{x}}}{\sqrt{1 - x ²}} dx ∫1−x2ecos−1xdx এর মান কত?
∫x2x3+1dx= \int \frac{x^{2}}{\sqrt{x^{3} + 1}} dx = ∫x3+1x2dx= কোনটি ?
∫dx(ex+e−x)2= \int \frac{dx}{\left ( e^{x} + e^{- x} \right )^{2}} = ∫(ex+e−x)2dx= কত?
f(x)=xsin−1x2g(x)=x2x2−4 \begin{array}{l}f(x)=x \sin ^{-1} x^{2} \\ g(x)=\frac{x^{2}}{x^{2}-4}\end{array} f(x)=xsin−1x2g(x)=x2−4x2