ত্রিকোনোমিতিক ফাংশনের যোগজীকরণ
θ+c \theta + c θ+c
∫(sec2α−tan2α)dα \int\left(\sec ^{2} \alpha-\tan ^{2} \alpha\right) d \alpha ∫(sec2α−tan2α)dα
=∫{sec2θ−(dsec2θ−1)}dθ =\int\left\{\sec ^{2} \theta-\left(d \sec ^{2} \theta-1\right)\right\} d \theta =∫{sec2θ−(dsec2θ−1)}dθ
=∫sec2θdθ−∫sec2θdθ+∫1dθ=θ+c \begin{array}{l}=\int \sec ^{2} \theta d \theta-\int \sec ^{2} \theta d \theta+\int 1 d \theta \\ =\theta+c\end{array} =∫sec2θdθ−∫sec2θdθ+∫1dθ=θ+c
∫sinx°dx=কত?\int_{ }^{ }\sin x\degree dx=কত?∫sinx°dx=কত?
∫9−x2 dx=\int_{ }^{ }\sqrt{9-x^{2\ }}dx=∫9−x2 dx=কত?
যোগজীকরণ নির্ণয় কর:
∫dxcosx+sinx \int \frac{dx}{\cos{x} + \sin{x}} ∫cosx+sinxdx
f(x)=x………(i) f(x)=x \ldots \ldots \ldots(i) f(x)=x………(i)
g(x)=cos−1x2………(ii) g(x)=\cos ^{-1} x^2 \ldots \ldots \ldots(i i) g(x)=cos−1x2………(ii)
y2=7x………(iii) y^2=7 x \ldots \ldots \ldots(i i i) y2=7x………(iii)