নির্দিষ্ট যোগজ
∫0π4(tan2x)dx \int_{0}^{\frac{π}{4}} \left ( \tan^{2}{x} \right ) dx ∫04π(tan2x)dx এর মান কত?
1+π4 1 + \frac{π}{4} 1+4π
1−π4 1 - \frac{π}{4} 1−4π
1+π3 1 + \frac{π}{3} 1+3π
1−π3 1 - \frac{π}{3} 1−3π
∫0π/4(tan2x)dx=[tanx−x]0π/4=1−π/4 \begin{array}{l}\int_{0}^{\pi / 4}\left(\tan ^{2} x\right) d x \\ =[\tan x-x]_{0}^{\pi / 4} \\ =1-\pi / 4\end{array} ∫0π/4(tan2x)dx=[tanx−x]0π/4=1−π/4
∫0π/2cosxdx= কত? \int_{0}^{\pi / 2} \cos x d x=\text { কত? } ∫0π/2cosxdx= কত?
f(x)= {x+1forx=0 \left \lbrace \begin{matrix} x + 1 & f{\quad\text{or}\quad} & x & = & 0 \end{matrix} \right . {x+1forx=0 হলে-
∫−1−12f(x)dx=18 \int_{- 1}^{- \frac{1}{2}} f{\left ( x \right )} dx = \frac{1}{8} ∫−1−21f(x)dx=81
∫01f(x)dx=0 \int_{0}^{1} f{\left ( x \right )} dx = 0 ∫01f(x)dx=0
f(−1)=1 f{\left ( - 1 \right )} = 1 f(−1)=1
নিচের কোনটি সঠিক?
∫1e2dxx(1+lnx) \int_{1}^{e^{2}} \frac{dx}{x \left ( 1 + \ln{x} \right )} ∫1e2x(1+lnx)dx এর মান কত?
α এর মান কত হলে ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx \int_{1}^{\alpha} \left \lbrace 2 + x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx + \int_{1}^{\alpha} \left \lbrace 3 - x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx =30