নির্দিষ্ট যোগজ
∫0nπ2cos2θd(tanθ) \int_{0}^{\frac{n \pi}{2}} \cos^{2}{\theta} d \left ( \tan{\theta} \right ) ∫02nπcos2θd(tanθ) এর মান-
∫0nπ2cos2θ⋅d(tanθ)=∫0nπ2cos2θ⋅sec2θ⋅dθ=∫0πn2dθ=nπ2 \int_{0}^{\frac{n \pi}{2}} \cos ^{2} \theta \cdot d(\tan \theta)=\int_{0}^{\frac{n \pi}{2}} \cos ^{2} \theta \cdot \sec ^{2} \theta \cdot d \theta=\int_{0}^{\frac{\pi n}{2}} d \theta=\frac{n \pi}{2} ∫02nπcos2θ⋅d(tanθ)=∫02nπcos2θ⋅sec2θ⋅dθ=∫02πndθ=2nπ
∫0π/2cosxdx= কত? \int_{0}^{\pi / 2} \cos x d x=\text { কত? } ∫0π/2cosxdx= কত?
f(x)= {x+1forx=0 \left \lbrace \begin{matrix} x + 1 & f{\quad\text{or}\quad} & x & = & 0 \end{matrix} \right . {x+1forx=0 হলে-
∫−1−12f(x)dx=18 \int_{- 1}^{- \frac{1}{2}} f{\left ( x \right )} dx = \frac{1}{8} ∫−1−21f(x)dx=81
∫01f(x)dx=0 \int_{0}^{1} f{\left ( x \right )} dx = 0 ∫01f(x)dx=0
f(−1)=1 f{\left ( - 1 \right )} = 1 f(−1)=1
নিচের কোনটি সঠিক?
∫1e2dxx(1+lnx) \int_{1}^{e^{2}} \frac{dx}{x \left ( 1 + \ln{x} \right )} ∫1e2x(1+lnx)dx এর মান কত?
α এর মান কত হলে ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx \int_{1}^{\alpha} \left \lbrace 2 + x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx + \int_{1}^{\alpha} \left \lbrace 3 - x \ln{\left ( x^{2} + 5 \right )} \right \rbrace dx ∫1α{2+xln(x2+5)}dx+∫1α{3−xln(x2+5)}dx =30